• Title/Summary/Keyword: 인공지능 이해

Search Result 385, Processing Time 0.03 seconds

The Enhancement of intrusion detection reliability using Explainable Artificial Intelligence(XAI) (설명 가능한 인공지능(XAI)을 활용한 침입탐지 신뢰성 강화 방안)

  • Jung Il Ok;Choi Woo Bin;Kim Su Chul
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.101-110
    • /
    • 2022
  • As the cases of using artificial intelligence in various fields increase, attempts to solve various issues through artificial intelligence in the intrusion detection field are also increasing. However, the black box basis, which cannot explain or trace the reasons for the predicted results through machine learning, presents difficulties for security professionals who must use it. To solve this problem, research on explainable AI(XAI), which helps interpret and understand decisions in machine learning, is increasing in various fields. Therefore, in this paper, we propose an explanatory AI to enhance the reliability of machine learning-based intrusion detection prediction results. First, the intrusion detection model is implemented through XGBoost, and the description of the model is implemented using SHAP. And it provides reliability for security experts to make decisions by comparing and analyzing the existing feature importance and the results using SHAP. For this experiment, PKDD2007 dataset was used, and the association between existing feature importance and SHAP Value was analyzed, and it was verified that SHAP-based explainable AI was valid to give security experts the reliability of the prediction results of intrusion detection models.

Theory of planned behavior and use of Virtual Personal Assistant(VPA) (계획된 행동이론과 가상개인비서 이용)

  • Eunji Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.703-708
    • /
    • 2023
  • The current study investigates VPA usage (i.e.,continuance intention of use, WOM intention) of by Theory of Planned Behavior (i.e.,attitude toward to VPA, subjective norm, perceived behavioral control) and perceived value/risk. The results show that (1) attitude toward to VPA, subjective norm, perceived behavioral control, and perceived value positively predicted the continuance intention of VPA use. Regarding WOM of intention, there were positively significant effects of the attitude toward to VPA, subjective norm, perceived behavioral control, and perceived value. The results of this study are expected to provide a variety of practical and theoretical implications in promising artificial intelligence market by the impact of TPB (i.e.,attitude toward to VPA, subjective norm, perceived behavioral control) and perceived values of VPA.

A Study on the Effectiveness of Generative AI Utilization in Programming Education - focusing on ChatGPT and Scratch Programming (생성형AI 활용이 프로그래밍 학습에 미치는 효과성에 관한 연구 - ChatGPT와 스크래치 프로그래밍 중심으로)

  • Kwangil KO
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • The remarkable advancement of artificial intelligence technology is bringing innovative changes to the field of education. In particular, generative AI models like ChatGPT hold great potential in self-directed programming education due to their natural conversational abilities. This study analyzed the learning effects of using ChatGPT in Scratch classes for non-SW majors. Dividing the classes into those using ChatGPT and those not, and conducting the same evaluations and surveys for the ChatGPT-utilizing group, the results showed that ChatGPT significantly enhanced learning outcomes and the utility of ChatGPT was highly evaluated in advanced learning areas such as understanding Scratch's advanced features and algorithms. This study is significant as it empirically demonstrates the potential of generative AI like ChatGPT as an effective tool in programming education.

Location Based Reminder on the Wireless LAN Environment (무선 LAN 환경에서의 위치기반 알리미)

  • Hong, In-Pyo;Park, Se-Jin;Kim, Min-Koo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.808-815
    • /
    • 2007
  • 유비쿼터스 컴퓨팅에 대한 관심이 높아지면서, 위치인식기술의 중요성이 대두 되고 있다. 기존에 많이 이용되어 왔던 위치인식기술에는 인공위성을 이용한 GPS, 초음파를 이용한 Cricket, 적외선을 이용한 Active Badge, RF를 이용한 RFDAR등이 있다. 하지만 이러한 기술들은 시스템을 위해 기반 시설을 전제 조건으로 하기 때문에 이용에 어려움이 따른다. 기존의 위치인식기술의 단점을 보안하기 위한 방법으로 제시된 것이 GSM과 무선 LAN을 이용한 위치인식기술들이다. 현재는 차량용 네비게이션, 물류시스템의 상품 운반 현황 추적 등 위치인식기술을 바탕으로 한 다양한 서비스들이 상용화되어 가고 있다. 상용화된 서비스들의 특성에 따라 개인화된 위치 정보를 필요로 하는 것들이 많아 지고 있으며, 개인화된 정보를 획득하고 이를 서비스에 적용하려는 시도가 여러 곳에서 진행 중이다. 개인화된 정보를 얻기 위해서는 사람이 이해하고 사용할 수 있는 장소라는 개념을 확보해야 하며, 인공지능적인 기술들을 필요로 하게 된다. 본 논문에서는 기반시설(AP: Access Point)이 충분한 무선 LAN을 이용하여 위치인식 기술애 대해 연구하였다. 기존의 무선 LAN 장비를 통하여 얻어진 위치 데이터를 가공하여 검색 기술의 고전적인 방법인 벡터 유사도와 확률 기반 유사도를 적용하여 인식률의 추이를 실험해 보고, 인식률 증가를 위한 방법들을 모색해 보겠다. 또 위치기반 알리미를 통하여 개인화 정보에 대한 적용 방향에 대해 연구해 보고자 한다.

  • PDF

Game Agent Learning with Genetic Programming in Pursuit-Evasion Problem (유전 프로그래밍을 이용한 추격-회피 문제에서의 게임 에이전트 학습)

  • Kwon, O-Kyang;Park, Jong-Koo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.253-258
    • /
    • 2008
  • Recently, game players want new game requiring more various tactics and strategies in the complex environment beyond simple and repetitive play. Various artificial intelligence techniques have been suggested to make the game characters learn within this environment, and the recent researches include the neural network and the genetic algorithm. The Genetic programming(GP) has been used in this study for learning strategy of the agent in the pursuit-evasion problem which is used widely in the game theories. The suggested GP algorithm is faster than the existing algorithm such as neural network, it can be understood instinctively, and it has high adaptability since the evolving chromosomes can be transformed to the reasoning rules.

Understanding Customer Purchasing Behavior in E-Commerce using Explainable Artificial Intelligence Techniques (XAI 기법을 이용한 전자상거래의 고객 구매 행동 이해)

  • Lee, Jaejun;Jeong, Ii Tae;Lim, Do Hyun;Kwahk, Kee-Young;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.387-390
    • /
    • 2021
  • 최근 전자 상거래 시장이 급격한 성장을 이루면서 고객들의 급변하는 니즈를 파악하는 것이 기업들의 수익에 직결되는 요소로 인식되고 있다. 이에 기업들은 고객들의 니즈를 신속하고 정확하게 파악하기 위해, 기축적된 고객 관련 각종 데이터를 활용하려는 시도를 강화하고 있다. 기존 시도들은 주로 구매 행동 예측에 중점을 두었으나 고객 행동의 전후 과정을 해석하는데 있어 어려움이 존재했다. 본 연구에서는 고객이 구매한 상품을 확정 또는 환불하는 행동을 취할 때 해당 행동이 발생하는데 있어 어떤 요소들이 작용하였는지를 파악하고, 어떤 고객이 환불할 지를 예측하는 예측 모형을 새롭게 제시한다. 예측 모형 구현에는 트리 기반 앙상블 방법을 사용해 예측력을 높인 XGBoost 기법을 적용하였으며, 고객 의도에 영향을 미치는 요소들을 파악하기 위하여 대표적인 설명가능한 인공지능(XAI) 기법 중 하나인 SHAP 기법을 적용하였다. 이를 통해 특정 고객 행동에 대한 각 요인들의 전반적인 영향 뿐만 아니라, 각 개별 고객에 대해서도 어떤 요소가 환불결정에 영향을 미쳤는지 파악할 수 있었다. 이를 통해 기업은 고객 개개인의 의사 결정에 영향을 미치는 요소를 파악하여 개인화 마케팅에 사용할 수 있을 것으로 기대된다.

  • PDF

Automating mosaic processing using AI, 'B.A.M.O.S' (AI를 이용한 모자이크 처리의 자동화, 'B.A.M.O.S')

  • Shim, Han-Moi;Cho, Beom-Seok;Yeom, Cheol-Jun;Oh, Jun-Hwi;Woo, Young-Hak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.17-18
    • /
    • 2022
  • 현재 국내에서는 1인 1스마트폰 시대를 맞이하게 되었고 이에 맞춰 많은 종류의 관련 산업들이 발전하고 있다. 특히 멀티미디어와 콘텐츠 산업 또한 크게 성장하고 있다. 이런 상황에서 필수적으로 사용되는 편집 기술을 위하여, 많은 소프트웨어가 등장하고 이용되고 있다. 편집을 자유롭게 이용하기 위해서는 전문적인 인력이 필요하거나 시간이나 자본을 들여서 이해와 학습을 필수적으로 해야 한다. 본 논문에서는 이러한 편집 과정의 수고로움을 덜어줄 수 있도록 인공지능의 객체탐지 기술을 이용하여 특정 상표에 대한 모자이크 처리 작업을 자동으로 할 수 있는 B.A.M.O.S를 개발하였다. YOLO 알고리즘을 이용하여 목표 상표를 학습시켜 이를 B.A.M.O.S에 적용하였고, 목표 상표를 인식하여 모자이크 처리를 하도록 하였다.

  • PDF

Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students (초등학생의 데이터 리터러시 함양을 위한 AI 데이터 과학 교육 프로그램 개발)

  • Hong, Ji-Yeon;Kim, Yungsik
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2020
  • The development of intelligent information technology based on intelligence and data and network technology implemented by artificial intelligence has instigated innovation in society as a whole and has shown wide social and economic impact. Therefore, not only overseas but also in Korea, AI education is in a hurry to cultivate talents who will lead the upcoming society. Data is an important part of artificial intelligence, and data literacy, which can collect, process, and analyze data, to make data-based decisions, can be seen as an important competency to be developed along with AI literacy. Therefore, in this study, an AI data science education program that can increase data literacy of elementary school students was developed and applied to the experimental group, and its effectiveness was verified through a pre- and post response sample t-test. As a result, all of the four detailed competencies of data literacy, data understanding, collection, analysis, and expression, showed statistically significant improvement, indicating that the AI data science education program was effective in improving students' data literacy.

Analysis of Prompt Engineering Methodologies and Research Status to Improve Inference Capability of ChatGPT and Other Large Language Models (ChatGPT 및 거대언어모델의 추론 능력 향상을 위한 프롬프트 엔지니어링 방법론 및 연구 현황 분석)

  • Sangun Park;Juyoung Kang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.287-308
    • /
    • 2023
  • After launching its service in November 2022, ChatGPT has rapidly increased the number of users and is having a significant impact on all aspects of society, bringing a major turning point in the history of artificial intelligence. In particular, the inference ability of large language models such as ChatGPT is improving at a rapid pace through prompt engineering techniques. This reasoning ability can be considered as an important factor for companies that want to adopt artificial intelligence into their workflows or for individuals looking to utilize it. In this paper, we begin with an understanding of in-context learning that enables inference in large language models, explain the concept of prompt engineering, inference with in-context learning, and benchmark data. Moreover, we investigate the prompt engineering techniques that have rapidly improved the inference performance of large language models, and the relationship between the techniques.

An AI Service to support communication and language learning for people with developmental disability (발달장애인을 위한 커뮤니케이션과 언어 학습 증진을 위한 인공지능 서비스)

  • Park, Chan-Jun;Kim, Yang-Hee;Jang, Yoonna;Umadevi, G.R;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.51-57
    • /
    • 2020
  • Children with language developmental disabilities often struggle through their lives from a lot of challenges in everyday life and social activities. They're often easily deprived of the opportunity to engage in social activities, because they find difficulty in understanding or using language, a core means of communication. With regard to this issue, AAC(Augmentative and Alternative Communication) can be an effective communication tool for children who are suffering from language disabilities. In this paper, we propose a deep learning-based AI service to make full use of the pictogram as an AAC tool for children with language developmental disabilities to improve not only the ability to interact with others but the capacity to understand language. Using this service, we strive to help these children to more effectively communicate their intention or desire and enhance the quality of life.