• 제목/요약/키워드: 인공지능 수학

검색결과 133건 처리시간 0.019초

수학교육의 변화와 인공지능과의 연관성 탐색 (A study on the relationship between artificial intelligence and change in mathematics education)

  • 이지혜;허난
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제32권1호
    • /
    • pp.23-36
    • /
    • 2018
  • 인공지능(Artificial Intelligence)의 잠재력에 대한 기대로 여러 분야에서 이를 활용하고자 노력하고 있으며 교육 분야에서의 적용에 대한 관심 역시 높다. 교육에 있어서 인공지능 기술에 활용되는 기계학습(machine learning)과 딥러닝(deep learning)으로 스스로 학습하는 방법에 대한 관심을 가지게 되었으며 이러한 방식이 교육에 어떻게 활용될 수 있을 지와 인공지능을 어떻게 수학교육에 적용할 수 있을지에 대한 관심이 대두되고 있다. 이에 정보통신기술의 발달에 따른 수학교육의 변화를 고찰해 봄으로써 수학교육의 변화가 인공지능과 어떠한 연과성이 있는지를 살펴보는데 의의가 있다고 할 수 있다.

인공지능 수학교과서의 최적화 내용에서 사용하는 인공지능 기반 수학적 대상들에 대한 담론적 구성 분석 (An analysis of discursive constructs of AI-based mathematical objects used in the optimization content of AI mathematics textbooks)

  • 오영석;김동중
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.319-334
    • /
    • 2024
  • 본 연구의 목적은 인공지능 수학교과서의 최적화 내용에서 사용하는 구체적 대상이 명명하기와 담론적 조작을 통해 담론적 대상으로 전환되는 과정을 분석함으로써 인공지능 기반 수학적 대상들에 대한 담론적 구성을 밝히는 것이었다. 이러한 목적을 달성하기 위해 5종의 고등학교 인공지능 수학교과서의 최적화 내용에서 사용하는 구체적 대상을 추출하고, 담론적 대상을 분석할 수 있는 인공지능 기반 수학적 대상들에 대한 담론적 구성과 담론적 조작 분석틀을 개발하였다. 연구 결과, 최적화 내용의 손실함수 단원과 경사하강법 단원에서 사용하는 구체적 대상은 총 15개였으며, 명명하기와 담론적 조작을 통해 추상적 담론 대상으로 창발하는 구체적 대상은 1개인 것으로 나타났다. 이러한 연구 결과는 문서화된 교육과정 측면에서 인공지능 기반 수학적 대상들에 대한 담론적 구성을 구체화하고 학생들이 인공지능 기반 수학적 담론을 탐구적으로 개발할 수 있는 실천 방안을 제공할 수 있다는데 그 의의가 있을 뿐 아니라, 인공지능 기반 수학적 대상에 대한 효과적인 담론적 구성과정과 교육과정 개발에 시사점을 제공할 수 있을 것이다.

개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석 (Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics)

  • 성지현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권3호
    • /
    • pp.303-326
    • /
    • 2023
  • 수학은 계통성이 강한 학문으로 이전 단계에서의 학습 결손이 다음 학습에 큰 영향을 주기 때문에 학생들의 학습이 잘 이루어졌는지 수시로 확인하고, 즉각적으로 피드백을 제공해 주는 것이 필요하며, 이를 위해 수학교육에서 인공지능 교육시스템(ITS)을 활용할 수 있다. 이에 본 연구에서는 개인 맞춤형 수학 학습을 실행하기 위해 적용될 수 있는 인공지능 교육시스템의 기능이 무엇인지 살펴보고, 이를 실제로 적용해 본 결과를 분석하여 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습의 효과성을 구체적으로 살펴보는 것을 목적으로 하였다. 이를 위해 개인 맞춤형 학습과 수학교육에서 인공지능이 활용된 선행연구 내용을 분석하여 개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능을 추출하고, 이것을 반영한 학습 및 수업을 설계하여 초등학교 5학년 학생들에게 약 3개월 간 적용해 본 결과를 분석하였다. 그 결과, 개인 맞춤형 수학 학습을 위해 활용될 수 있는 인공지능 교육시스템의 기능은 크게 진단 및 평가, 분석 및 예측, 피드백 및 콘텐츠 제공으로 나눌 수 있었다. 또한 이러한 기능을 반영한 학습 설계를 초등학생들에게 적용한 결과, 개인 맞춤형 수학 학습에 인공지능 교육시스템이 어떻게 효과적으로 활용될 수 있는지에 대한 시사점을 얻었다. 그리고 앞으로 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습이 더욱 효과적으로 이루어질 수 있기 위해 더 정교한 기술과 자료 개발이 필요하다는 점을 제언하였다.

수학교육에서의 인공지능 활용에 대한 초등 교사의 인식 탐색 (Elementary School Teachers' Perceptions of Using Artificial Intelligence in Mathematics Education)

  • 김정원;권민성;방정숙
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권4호
    • /
    • pp.299-316
    • /
    • 2023
  • 본 연구는 교육에서 인공지능 활용의 중요성과 필요성이 제기됨에 따라 수학교육에서 인공지능 활용에 대한 초등 교사들의 인식을 탐색하는 것을 목적으로 한다. 이를 위하여 초등 교사 161명을 대상으로 인공지능과 수학교육에 대한 태도 및 수학 교수, 학습, 평가 도구로서 인공지능 활용에 대한 인식을 5점 Likert 척도를 활용하여 분석하였다. 연구 결과, 초등 교사들은 전반적으로 수학의 교수, 학습, 평가를 위한 도구로 AI를 활용하는 데에 긍정적인 인식을 드러냈다. 특히, AI를 활용한 수학교육은 맞춤형 개별 교수 학습, 선수 학습 보충, 평가 결과 분석에 도움이 될 것이며 인공지능이 교사의 역할을 대체할 수 없다는 데에 강한 긍정을 드러냈다. 한편, 초등 교사들은 인공지능을 활용한 수학 수업에 대한 자신감이나 준비에서는 상대적으로 낮은 인식을 드러냈는데, 이는 인공지능과 관련된 수학 수업의 실행이나 연수 이수의 여부에 따라 유의한 차이를 드러냈다. 본 연구의 결과를 바탕으로 수학 교육에서 인공지능을 효과적으로 활용하기 위한 교사의 역할 및 교사들에게 필요한 지원에 대한 시사점을 논의하였다.

<인공지능 수학> 교과서의 '관련 학습 요소' 반영 내용 분석 (An Analysis of 'Related Learning Elements' Reflected in Textbooks)

  • 권오남;이경원;오세준;박정숙
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제35권4호
    • /
    • pp.445-473
    • /
    • 2021
  • 이 연구는 2015 개정 교육과정에서 신설 과목으로 설계된 <인공지능 수학> 교과서를 분석하여 차기 교육과정 설계의 시사점을 도출하는 데 목적이 있다. <인공지능 수학> 시안을 담은 수학과 교육과정 문서에서는 '학습 요소' 대신에 '관련 학습 요소'를 제시하고 있다. '관련 학습 요소'는 인공지능의 맥락에서 활용될 수 있는 수학적 개념이나 원리로 정의하고 있는데 '관련 학습 요소'를 다루는 범위와 방법에 대해서는 구체적인 제한은 없다. 이에 '관련 학습 요소'가 <인공지능 수학> 교과서에서 반영된 양상을 형식, 범위와 방법, 공학적 도구 활용 방식을 중심으로 분석하였다. 교과서별로 '관련 학습 요소'를 교과서에 기술하는 형식상의 차이와 수학 개념을 취급하는 양과 범위에 차이가 있었다. 또한, '관련 학습 요소'를 하나의 수학 개념과 동일하게 정의하여 사용한 경우와 정의보다는 인공지능의 맥락에서 설명 위주로 서술하였다. '관련 학습 요소'를 인공지능의 맥락에서 활용할 수 있도록 교과서별로 유사한 공학적 도구를 다루었지만, 계산과 결과를 해석하는 활동 중심이었다. 고등학교 수학 과목으로서 <인공지능 수학>의 지향을 교과서에 충분히 반영하기 위해서 '관련 학습 요소'에 관한 체계적인 논의가 필요하다. 또한, 학생들이 인공지능 맥락의 활용 사례를 경험하기 위해서는 공학적 도구를 활용하여 문제를 설정하고 해결할 수 있는 내실화된 활동이 교과서에 구현되어야 할 것이다.

수학 문장제 해결과 관련한 ChatGPT의 교수학적 활용 방안 모색 (A study on the didactical application of ChatGPT for mathematical word problem solving)

  • 강윤지
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제38권1호
    • /
    • pp.49-67
    • /
    • 2024
  • 최근 인공지능 언어 모델의 다양한 활용에 대한 관심이 높아지면서 수학교육에서의 교수학적 활용 방안 모색에 대한 필요성이 강조되고 있다. 인공지능 언어 모델은 자연어 처리가 가능하다는 특징으로 인하여 수학 문장제 해결과 관련된 활용이 기대된다. 인공지능 언어 모델 중 하나인 ChatGPT의 성능을 확인하기 위하여 초등학교 교과서에 제시된 문장제를 해결하도록 지시하였으며 풀이 과정 및 오류를 분석하였다. 분석 결과, 인공지능 언어 모델은 81.08%의 정답률을 나타내었으며 문제 이해 오류, 식 수립 오류, 계산 오류 등이 발생하였다. 이러한 문장제 해결 과정 및 오류 유형의 분석을 바탕으로 인공지능 언어 모델의 교수학적 활용 방안과 관련된 시사점을 제안하였다.

인공지능(Artificial Intelligence)과 대학수학교육 (Artificial Intelligence and College Mathematics Education)

  • 이상구;이재화;함윤미
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2020
  • 첨단 정보통신기술(ICT)인 인공지능(AI), 사물인터넷(IoT), 빅데이터(Big Data) 등이 사회와 경제 전반에 융합돼 혁신적인 변화가 일어나는 요즘, 헬스케어, 지능형 로봇, 가정용 인공지능 시스템(스마트홈), 공유자동차 등은 이미 우리 생활에 깊이 영향을 미치고 있다. 이미 오래전부터 공장에서는 로봇이 사람 대신 일을 하고 있으며(FA, OA), 인공지능 의사도 병원에서 활동을 하고 있고(Dr. Watson), 인공지능 스피커(기가지니)와 인공지능 비서인 구글 어시스턴트가 자연어생성을 하며 우리를 돕고 있다. 이제 인공지능을 이해하는 것은 필수가 되었으며, 인공지능을 이해하기 위해서 수학의 지식은 선택이 아니라 필수가 되었다. 따라서 이런 일들을 가능하게 해주는 수학지식을 설명하는 역할이 수학자들에게 주어졌다. 이에 본 연구진은 인공지능과 머신러닝(Machine Learning, 기계학습)을 이해하기 위해 필요한 수학 개념을 우리의 실정에 맞게 한 학기(또는 두 학기) 분량으로 정리하여, 무료 전자교과서 "인공지능을 위한 기초수학"을 집필하고, 인공지능 분야에 관심이 있는 다양한 전공의 대학생과 대학원생을 대상으로 하는 강좌를 개설하였다. 본 논문에서는 그 개발과정과 운영사례를 공유한다. http://matrix.skku.ac.kr/math4ai/

인공지능에 활용되는 공학수학 합성곱(convolution) 교수·학습자료 연구 (A Study on Teaching of Convolution in Engineering Mathematics and Artificial Intelligence)

  • 이상구;남윤;이재화;김응기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권2호
    • /
    • pp.277-297
    • /
    • 2023
  • 합성곱(convolution)은 인공지능(artificial intelligence)에서 컴퓨터 비전(computer vision), 심층학습(deep learning) 등의 분야를 이해하고 응용하려면 알아야 하는 중요한 수학적 연산이다. 그러나 현재의 공학수학 교과과정의 합성곱 내용은 독립적인 주제가 아니라 단편적으로 다루어지고 있어서 그 의미를 충분히 전달하지 못하고 있다. 이에 본 논문에서는 공학수학에서 인공지능 교육과 연계할 수 있도록 개발한 합성곱 교수·학습 자료를 제시한다. 먼저 기존 공학과 인공지능 기술의 통합적 관점에서 합성곱에 대한 배경지식과 응용 사례를 정리하고, 코딩을 이용한 교육이 가능하도록 파이썬(Python)/SageMath 코드를 개발하여 제공한다. 또한 합성곱 지식이 인공지능에서 어떻게 활용되는지 보여주는 구체적인 예시로, 이미지 분류에 사용되는 합성곱신경망(Convolutional Neural Network, CNN)을 개발된 코드와 함께 제공한다. 본 교수·학습자료는 합성곱 개념을 쉽고 효과적으로 교육할 수 있도록 공학수학의 보충 자료로 활용가능하며, 학습자는 코딩을 통해 합성곱을 배우고 본인의 전공과 관련된 인공지능 기술을 학습하는 데 이를 이용할 수 있다.

대학수학 경사하강법(gradient descent method) 교수·학습자료 개발 (A Study on the Development of Teaching-Learning Materials for Gradient Descent Method in College AI Mathematics Classes)

  • 이상구;남윤;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권3호
    • /
    • pp.467-482
    • /
    • 2023
  • 본 논문에서는 인공지능 알고리즘에서 많이 사용되는 경사하강법(gradient descent method)을 대학수학 강좌에서 인공지능 활용사례로 사용할 수 있도록 연구한 교수·학습 기초자료를 소개한다. 특히 대학 미적분학 수준에서도 가르칠 수 있도록 자세한 개념 설명과 함께 복잡한 함수에 관해서도 쉽게 계산할 수 있도록 파이썬(Python) 기반의 SageMath 코드를 제공한다. 그리고 실제 인공지능 응용과 연계하여 선형회귀에서 발생하는 최소제곱문제를 경사하강법을 활용하여 풀이한 예시도 함께 소개한다. 본 연구는 대학 미적분학 뿐만 아니라 공학수학, 수치해석, 응용수학 등과 같은 고급 수학 과목을 지도하는 다양한 교수자들에게 도움이 될 수 있다.

인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인 (Guidelines for big data projects in artificial intelligence mathematics education)

  • 이정화;한채린;임웅
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권2호
    • /
    • pp.289-302
    • /
    • 2023
  • 지식정보사회의 비약적인 발전에 힘입어 빅데이터를 분석하여 가치있는 결과물을 도출하고 유용한 정보를 추출하는 역량이 학교 수학의 주요 목표 중 하나로 급부상하고 있다. 고등학교 수학 진로 선택 과목 중 하나인 <인공지능 수학>은 디지털 기술을 활용한 통계 프로젝트를 통해 빅데이터에 기반한 새로운 통계 교육의 기회를 제공할 수 있다. 이 연구에서는 효과적인 빅데이터 통계 프로젝트 기반 과제를 설계하기 위한 일련의 가이드라인을 제안하고, 이 기준에 따라 5종의 인공지능 수학 교과서에 실린 최적화 단원 과제들을 평가하였다. 인공지능 수학 교과에서 빅데이터 통계 프로젝트 과제를 설계 시 고려하도록 도출된 가이드라인은 다음과 같다: (1) 지식과 기술을 국가 학교 수학 교육과정에 맞추고, (2) 전처리된 대규모 데이터 세트를 사용하며, (3) 데이터 과학자의 문제 해결 방법을 사용하고, (4) 의사 결정을 장려하며, (5) 공학도구를 활용하고, (6) 협업 학습을 촉진한다. 분석 결과에 따르면 가이드라인에 완전히 부합하는 과제는 드물었고, 특히 대부분의 교과서에서 가이드라인 2에 해당하는 요소를 프로젝트 과제에서 통합하지 못하고 있는 것으로 나타났다. 또한 소규모 데이터 세트나 빅데이터를 전처리 없이 직접 사용하는 경우가 많아 학생들의 빅데이터의 개념에 대한 오해를 불러일으킬 것이 우려된다. 본 연구에서는 결과를 토대로 인공지능에 필요한 관련 수학 지식과 기술을 밝히고, 이것이 빅데이터 과제에 통합될 때 얻을 수 있는 잠재적 이점과 교육적 고려사항에 대해 논의하였다. 이 연구는 수학적 개념과 머신러닝 알고리즘과의 연계 및 빅데이터를 사용하는 통계 교육에서의 효과적인 공학적 도구 사용에 대한 통찰을 제공하고자 하였다.