• Title/Summary/Keyword: 인공지능 개발자

Search Result 265, Processing Time 0.026 seconds

A Two-stage Meta-heuristic Algorithm for Container Load Sequencing (Meta-heuristic 기법을 이용한 2단계 컨테이너 적하계획 알고리즘)

  • 김갑환;류광렬;박영만;강진수;이용환
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.9-12
    • /
    • 2000
  • 컨테이너 터미널에서 효율적인 적하작업 계획을 자동으로 생성하는 알고리즘을 연구하였다. 실제 터미널에서 계획자들이 적하작업 계획시에 고려하는 제약소건 및 효율적인 계획을 위한 고려사항을 조사하였다. 이를 바탕으로 1단계에서는 개미시스템(ant system)이라는 인공지능기법을 적용하여 제약조건을 만족시키면서 원활한 적하작업이 진행될 수 있도록 컨테이너 크레인과 트랜스퍼 크레인의 이동순서와 위치를 결정하고, 2단계에서는 1단계에서의 결과를 바탕으로 빔탐색법(beam search)을 사용하여 컨테이너 개개의 작업순서를 결정하는 알고리즘을 개발하였다. 또한 개발된 시스템의 성능을 검증하기 위하여 최근의 대형선반에 대한 실제 현장자료를 바탕으로 실험을 수행하였다.

  • PDF

A Study on the Educational Applications of the Virtual Reality Space Design Simulation (가상현실 공간설계 시뮬레이션의 교육적 활용 탐색)

  • Kim, Ji-Yun;Jung, Bokmoon;Yoo, Jiyeon;Lee, Tae Wuk;Kim, Kwihoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.439-442
    • /
    • 2021
  • 가상현실은 제4차 산업혁명 시대 신산업으로 꼽히는 기술 중 하나이다. 본 연구에서는 가상현실 공간설계의 교육적 가능성을 확인하고 교육적 활용을 위한 툴로서 3D 컴퓨터 그래픽 제작 소프트웨어인 블렌더와 3D 객체를 웹에서 쉽게 렌더링해주는 자바스크립트 라이브러리 three.js를 이용한 건축 내외장재 시뮬레이션 프로그램의 프로토타입을 개발 및 제안하였다. 본 연구에서 제안한 방식으로 학습자들은 자유도 높은 가상공간 공간설계가 가능하여 조형놀이의 형태로 학습을 즐길 수 있을 것으로 기대된다. 후속 연구로는 본 연구에서 구현한 프로토타입과 같은 방식으로 가상현실 공간설계 시뮬레이션을 할 수 있는 교육 프로그램 개발 및 효과성 검토를 실시할 것을 제안하였다.

  • PDF

Study on Artificial Neural Network Based Fault Detection Schemes for Wind Turbine System (풍력발전 시스템을 위한 인공 신경망 기반의 고장검출기법에 대한 연구)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.603-609
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance procedures. Condition Monitoring System(CMS) can be used to aid plant owners in achieving these goals. Its aim is to provide operators with information regarding the health of their machines, which in turn, can help them improve operational efficiency. In this work, systematic design procedure for artificial neural network based normal behavior model which can be applied for fault detection of various devices is proposed. Furthermore, to verify the design method SCADA(Supervisor Control and Data Acquisition) data from 850KW wind turbine system installed in Beaung port were utilized.

Decision Supporting System for Shadow Mask′s Development Using Rule and Case (Rule과 Case를 활용한 설계 의사결정 지원 시스템)

  • 김민성;진홍기;정사범;손기목;예병진
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.05a
    • /
    • pp.315-322
    • /
    • 2002
  • 최근에 경험적 지식을 체계화하는 방법으로 사례기반추론(CBR: Case Based Reasoning) 및 규칙기반추론(RBR: Rule Based Reasoning)이 여러 분야에서 이용되고 있다. CBR과 RBR이 각각 활용되기도 하지만 문제 해결의 정확성을 높이기 위해 복합된 형태로 사용되기도 하고, 흑은 효과적으로 문제를 해결하기 위해 문제 해결 단계별로 각각 사용되기도 한다 또한 데이터에서 지식을 추출하기 위한 세부 알고리즘으로는 인공지능과 통계적 분석기법 등이 활발하게 연구 및 적용되고 있다. 본 연구는 모니터의 핵심 부품인 섀도우마스크(Shadow Mask)를 개발하는데 있어 도면 협의부터 설계가지의 과정에 CBR과 RBR을 활용하고 발생되는 데이터를 이용하여 진화(Evolution)하는 지식기반시스템(Knowledge Based System)으로 구축하는 것을 목적으로 하고 있다. 특히 도면 협의시 인터넷상에 웹서버 시스템을 통하여 규격 (User Spec.)을 생성하고 이를 이용하여 자동으로 도면이 설계되도록 하고 저장된 사례들을 공유할 수 있도록 하여 도면 검토 시간이 단축되고 검토의 정확성을 기할 수 있어 실패비용을 감소시켰다. 그리고 실제 설계시 CBR과 RBR을 활용하여 자동설계를 할 수 있게 하였고 현장에서 발생되는 데이터를 지식화하여 유사사례 설계가 가능하도록 하였다. 지식기반시스템은 신속한 도면 검토가 가능하므로 인원 활용이 극대화되고, 섀도우 마스크 설계자와 마스터 패턴 설계자 사이의 원활한 의사소통을 통해 고객과의 신뢰성 확보와 신인도 향상을 기대할 수 있는 효과가 있다. 그리고 고급설계자에게만 의지되어온 것을 어느 정도 해결할 수 있고, 신입설계자에게는 훌륭한 교육시스템이 될 수 있다.한 도구임을 입증하였다는 점에서 큰 의의를 갖는다고 하겠다.운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한

  • PDF

Analysis of Multidimensional Learning Competency Test (MLCT) Results for Customized Learning Support: Focusing on Students of University A (맞춤형 학습지원을 위한 다면적 학습역량 진단검사(MLCT)결과 분석:A대학교 학습자를 중심으로)

  • Jihyun Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.813-819
    • /
    • 2024
  • This study was conducted to highlight the need for systematic and tailored learning support strategies for students at A University in the Jeonbuk region, based on the results of the university's self-developed Multi-Dimensional Learning Competency Test (MLCT). The research aimed to analyze foundational data to accurately diagnose students' learning competencies according to their characteristics and provide customized learning support. A total of 773 participants were involved in the study, which analyzed the MLCT components of 'Motivation,' 'Cognition,' 'Behavior,' 'Emotion,' and 'Environment' across different groups based on sex, grade level, and college affiliation. The findings underscore the necessity of developing and disseminating various learning competency analysis tools to ensure that students can adapt well to university life and engage in successful learning activities without dropping out. This calls for the development of systematic learner diagnosis methods and tailored learning support programs.

A Development of Welding Information Management and Defect Inspection Platform based on Artificial Intelligent for Shipbuilding and Maritime Industry (인공지능 기반 조선해양 용접 품질 정보 관리 및 결함 검사 플랫폼 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Yoon, Young-Wook;Shin, Sung-chul;Oh, Sang-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2021
  • The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.

Development of a Church Education Program Utilizing Project-Based Generative AI: Focusing on Youth Retreats (프로젝트 기반 생성형 AI 활용 교회교육 프로그램 개발: 청소년 수련회를 중심으로)

  • Sunwoo Nam
    • Journal of Christian Education in Korea
    • /
    • v.79
    • /
    • pp.97-120
    • /
    • 2024
  • Purpose of the Study : This study aims to propose alternative church education methodologies utilizing generative AI in the age of artificial intelligence. To achieve this, a project-based church education program using generative AI was developed and applied for a weekend retreat at Y Church's youth ministry located in Seoul. The study involved 18 youth participants and 5 teachers, and was conducted over two weekends, from February 17-18 and February 24-25, 2024, in a non-residential format. Contents and Method : The research methods included developing and applying the generative AI-based Bible education program, then assessing program satisfaction, effectiveness, and the internalization of faith through surveys and interviews with students, teachers, and the overseeing pastor. Satisfaction was measured using pre- and post-program questionnaires, while effectiveness was evaluated through pre- and post-program mind map assessments. To measure the internalization of faith, reflection journals and interviews were conducted. Conlusion : Analysis of the data from the 16 participants who attended both pre- and post-assessments revealed satisfaction with various aspects, including preferences for educational content, the value of educational activities, effort in participating in activities, perceived competence in the activities, preferences for the educators, preferences for the institution, and willingness to recommend the program to peers. The average satisfaction score increased from 11.92 before the program to 27.25 after, showing a significant increase of 15.33, which is statistically significant at the .05 level. Although the changes in faith maturity were not explicitly detailed, a slight change in faith through practical learning was observed. Additionally, the cognitive aspects of the learning content showed longer-lasting effects compared to typical retreats.

Optimum Evacuation Route Calculation Using AI Q-Learning (AI기법의 Q-Learning을 이용한 최적 퇴선 경로 산출 연구)

  • Kim, Won-Ouk;Kim, Dae-Hee;Youn, Dae-Gwun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.870-874
    • /
    • 2018
  • In the worst maritime accidents, people should abandon ship, but ship structures are narrow and complex and operation takes place on rough seas, so escape is not easy. In particular, passengers on cruise ships are untrained and varied, making evacuation prospects worse. In such a case, the evacuation management of the crew plays a very important role. If a rescuer enters a ship at distress and conducts rescue activities, which zones represent the most effective entry should be examined. Generally, crew and rescuers take the shortest route, but if an accident occurs along the shortest route, it is necessary to select the second-best alternative. To solve this situation, this study aims to calculate evacuation routes using Q-Learning of Reinforcement Learning, which is a machine learning technique. Reinforcement learning is one of the most important functions of artificial intelligence and is currently used in many fields. Most evacuation analysis programs developed so far use the shortest path search method. For this reason, this study explored optimal paths using reinforcement learning. In the future, machine learning techniques will be applicable to various marine-related industries for such purposes as the selection of optimal routes for autonomous vessels and risk avoidance.

Vision-based Low-cost Walking Spatial Recognition Algorithm for the Safety of Blind People (시각장애인 안전을 위한 영상 기반 저비용 보행 공간 인지 알고리즘)

  • Sunghyun Kang;Sehun Lee;Junho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.81-89
    • /
    • 2023
  • In modern society, blind people face difficulties in navigating common environments such as sidewalks, elevators, and crosswalks. Research has been conducted to alleviate these inconveniences for the visually impaired through the use of visual and audio aids. However, such research often encounters limitations when it comes to practical implementation due to the high cost of wearable devices, high-performance CCTV systems, and voice sensors. In this paper, we propose an artificial intelligence fusion algorithm that utilizes low-cost video sensors integrated into smartphones to help blind people safely navigate their surroundings during walking. The proposed algorithm combines motion capture and object detection algorithms to detect moving people and various obstacles encountered during walking. We employed the MediaPipe library for motion capture to model and detect surrounding pedestrians during motion. Additionally, we used object detection algorithms to model and detect various obstacles that can occur during walking on sidewalks. Through experimentation, we validated the performance of the artificial intelligence fusion algorithm, achieving accuracy of 0.92, precision of 0.91, recall of 0.99, and an F1 score of 0.95. This research can assist blind people in navigating through obstacles such as bollards, shared scooters, and vehicles encountered during walking, thereby enhancing their mobility and safety.

The 4th Industrial Revolution and Job Transition of the People with Disabilities (제4차 산업혁명과 장애인 일자리 추이)

  • Na, Woon-Hwan
    • 재활복지
    • /
    • v.22 no.3
    • /
    • pp.23-39
    • /
    • 2018
  • The fourth industrial revolution and technological innovation will make the job factor of people with disabilities complicated and difficult. Thus, this study analyzed the technical factors influencing the job structure and tried to find a way to develop the job of the people with disabilities in response to the 4th Industrial Revolution by changing the labor market and changing the trend of the employment by industry. The methods for this study are literature research and FGI. First, technological factors affecting the job structure of the Fourth Industrial Revolution are artificial intelligence, Internet and networking of things, 3D printing, big data, Second, technological innovation due to the industrial revolution was a major factor in the job structure. As the industrial revolution and technological innovation progressed, the job structure shifted rapidly from the manufacturing industry to the service industry, Third, as the measures of the 4th Industrial Revolution and the change of the job structure, it is necessary to make preemptive investment for the development of competency to cope with technological innovation, Finally, in order to respond to the Fourth Industrial Revolution and the rapidly changing technological innovation, the basic data of people with disabilities should be able to be big data.