With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.05a
/
pp.140-148
/
2002
컴퓨터를 통해 편리한 생활을 추구해온 인간들은 전자상거래 분야에서도 이러한 욕구를 충족시키기 위해 자동협상이라는 기능을 요구하게 되었다. 지능형 에이전트를 이용한 자동협상은 인간의 거래협상 업무의 부담을 많은 부분을 덜어주고 있어 자동협상 에이전트에 관한 연구들이 활성화되고 있다 소비자간 전자상거래에서는 다수의 자동협상 에이전트 연구들이 경매시장에서의 자동협상에 초점을 맞추고 있는데 반해, 가격 이외의 여러 거래속성을 갖는 상품에 대한 제안기반 협상시장에서의 자동협상 에이전트에 관한 연구들이 최근에 활발히 이루어지고 있다. 본 연구에서는 소비자간 전자상거래에서 거래속성의 변화에 따라 개인의 효용가치의 차이를 이용한 다속성 상품의 제안기반 협상시장이 가져야할 특성에 대해 연구하고, 이를 기반으로 자동 거래협상을 수행에 필요한 거래속성 변화에 따른 소비자 개인의 선호체계를 표현하기 위한 방법을 개발하였다. 그리고 이러한 자동 거래협상을 공정하게 수행하기 위해 협상시장이 가져야할 특징과 프로토콜을 제안하고 시장운영 에이전트 시스템의 구조를 설계하였다. 마지막으로 이러한 분산형 시장구조를 갖는 제안기반의 협상시장에 참여하는 사용자 에이전트 시스템이 최적의 거래상대와 최적의 거래안을 찾기 위한 탐색방법을 구체적으로 개발하였다. 본 연구의 결과를 통하여 소비자간 전자상거래에서 구매자 뿐만 아니라 판매자도 협상결과에 따른 거래로 얻어지는 자신의 효용을 극대화할 수 있는 공정한 협상시장을 운영할 수 있을 뿐만 아니라 사용자들도 손쉽게 자신의 협상 선호체계를 쉽게 표현하고, 표현된 선호체계를 반영한 자동 거래협상을 수행할 수 있을 것 이다. 기존의 UN/EDIFACT표준을 사용하고 있는 EDI환경과 기존 VAN 방식의 EDI 중계 시스템과 연동되며, 향후 관세청의 XML/EDI 표준 시행을 미리 대비하는 선도연구로서 자리매김이 된다. 본 연구에서는 개발된 XML/EDI 통관시스템은 향후, 서비스의 최대 걸림돌이 되어왔던 값비싼 EDI 사용료의 부담에서 벗어날 수 있게 할 것이며, 저렴한 EDI구축/운영 비용으로 전자문서교환의 활성화와 XML이 인터넷 기반의 문서유통 표준으로 자리매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without
Immediate and serious attention on CGF(computer generated forces) behavior modeling for defense M&S (modeling & simulation) is required in response to the reduction in the number of troops and development of 4th industrial technologies. It is crucial for both military person and engineer to understand such technologies. The research aims to provide guidelines for establishment of research direction on CGF behavior modeling. We investigate traditional and/or novel methodologies such as rule-based, agent-based, and learning-based method. Discussions on future direction of applicable area and strategies are followed. We expect that the research plays a key role for understanding CGF behavior modeling.
Journal of The Korean Association of Information Education
/
v.21
no.4
/
pp.393-401
/
2017
The purpose of this study is to develop a deep learning based learning system for improving learner's data analytical thinking ability. The contents of the study are as follows. First, deep learning was applied to the discovery learning model to improve data analytical thinking ability. This is a learning method that can generate a model showing the relationship of given data by using the deep learning method, then apply the model to new data to obtain the result. Second, we developed a deep learning based system for DBD learning model. Specifically, we developed a system to generate a model of data using the deep learning method and to apply this model. The research of deep learning based learning system will be a new approach to improve learner's data analytical thinking ability in future society where data becomes more important.
과학 기술 분야에서 최근 대용량의 데이터를 활용하여 인공지능 및 빅데이터 연구를 수행하고 있는 연구소 및 기업들이 많아지고 있다. 빅데이터 연구를 위해 스토리지에 대용량의 데이터를 저장하고 이를 연구자들에게 제공할 수 있는 편리한 시스템을 요구하는 요청이 증가하고 있다. 이를 위해 스토리지를 구매하는 방법과 클라우드 스토리지를 이용하는 방법이 존재한다. 하지만 두 방법 모두 막대한 비용적인 부분이 존재한다. 또한 데이터 공유 및 외부 스토리지 이용 제공에 대한 기관의 정책적인 부분들이 문제가 된다. 이 문제를 해결하기 위해 KISTI에서는 SDN 네트워크 기반의 분산 스토리지 관리 시스템을 개발하였다. 이 시스템의 경우 SDN 네트워크에 스토리지를 연결하여 보안적으로 안전한 전용의 회선을 이용하여 기관 데이터 정책에 위배되지 않는 환경을 구성한다. 또한 기관의 연구자들에게 데이터를 제공 시 관리자의 허가를 받은 사용자들에게만 데이터를 제공하는 기능을 이용하여 안전하고 쉽게 데이터를 다운로드 받을 수 있는 협업 플랫폼을 개발하였다. 본 논문을 통해 플랫폼을 개발 및 구축에 대해 자세하게 설명하고자 한다.
In order to improve formal presentation attitudes such as presentation of job interviews and presentation of project results at the company, there are few automated methods other than observation by colleagues or professors. In previous studies, it was reported that the speaker's stable speech and gaze processing affect the delivery power in the presentation. Also, there are studies that show that proper feedback on one's presentation has the effect of increasing the presenter's ability to present. In this paper, considering the positive aspects of correction, we developed a program that intelligently corrects the wrong presentation habits and attitudes of college students through facial analysis of videos and analyzed the proposed program's performance. The proposed program was developed through web-based verification of the use of redundant words and facial recognition and textualization of the presentation contents. To this end, an artificial intelligence model for classification was developed, and after extracting the video object, facial feature points were recognized based on the coordinates. Then, using 4000 facial data, the performance of the algorithm in this paper was compared and analyzed with the case of facial recognition using a Teachable Machine. Use the program to help presenters by correcting their presentation attitude.
As the Internet continues to evolve, cyber attacks are becoming more precise and covert. Anonymous communication, which is used to protect personal privacy, is also being used for cyber attacks. Not only it hides the attacker's IP address but also encrypts traffic, which allows users to bypass the information protection system that most organizations and institutions are using to defend cyber attacks. For this reason, anonymous communication can be used as a means of attacking malicious code or for downloading additional malware. Therefore, this study aims to suggest a method to detect and block encrypted anonymous communication as quickly as possible through artificial intelligence. Furthermore, it will be applied to the defense to detect malicious communication and contribute to preventing the leakage of important data and cyber attacks.
Kim, Dong-Ook;Lee, Ki-Yoen;Kim, Dong-Woo;Gil, Hyoung-Jun;Kim, Hyang-Kon;Chung, Young-Sik
Proceedings of the KIEE Conference
/
2008.07a
/
pp.2200-2202
/
2008
최근 건축구조물의 복잡화, 다양화로 인하여 화재발생시 유독가스의 심각성과 공간의 특수성으로 인하여 대형 참사가 발생될 위험이 더욱 커짐에 따라 인명피해와 직접적으로 연결되는 피난탈출에 있어서 조속한 대책 마련이 시급한 실정이다. 기존 방식의 고정식 단방향을 표시하는 피난유도등은 효율적인 인명 대피 및 구조가 이루어지지 못하기 때문에 화재 발생 시 빠른 피난이 가능하도록 화재감지기와 연동하여 위험에 처한 피난자들을 탈출시키고 화재의 발생위치를 정확히 파악하여 초기 진압할 수 있는 시스템 구축이 절실히 요구된다. 이러한 점에 착안하여 ID를 가지는 화재 감지기 및 수신반과 연동하여 화재가 발생하면 화재가 발생된 방향의 반대 방향으로 모든 유도등의 방향을 제어하여 안전한 비상출입구로 사람들을 유도시키고 화염 및 연기의 방향과 속도를 계산하여 초기진압 및 최적 대피로로 방향을 표시하는 인공지능형 방향성 유도등 개발에 본 연구의 목적이 있다.
현재 구조최적화는 아직도 실무설계에서 제 위상을 찾지 못하고 있다. 그 원인은 주로 지금까지의 대부분의 연구가 알고리즘 위주로, 교과서적 예제위주로 치달았기 때문이며 따라서 오늘날과 같은 고도의 전산화시대에도 실무설계자들에게 외면당하고 있는 실정이다. 앞으로 구조최적화 분야의 전문가들이 실무설계문제 응용위주의 연구개발에 주력함으로써 이러한 문제는 쉽게 극복될 것이며, 실무설계자들도 최적설계가 무엇인지 제대로 알지도 못하면서 외면만 하고 매도만 할 것이 아니라, 오늘날 멀티미디어 초고성능 PC시대에 막대한 정보 및 자료의 처리능력을 갖춘 CD롬과 고성능 통신기능, 고도의 음성, 문자, 영상인식 Input Media, 그리고 윈도우, 펜티엄 같은 현재의 OS와 OS/2, 시카고 같은 차세대 OS체계 하에서 고도의 CAD/CAD Expert 시스템이 실용화 되려면 최적설계는 재래적인 설게방법을 대치하는 시스템 내의 핵심설계코드가 되지 않을 수 없다는 점을 인식해야 할 것이다. 어차피 가까운 장래에 현재의 이론과 응용사이의 lAG와 실무설계자들의 오해가 해소되는 날이 오면 최적설계는 지금의 MPC시대는 물론 인공지능형, 사고형 차세대 컴퓨터 시대에 적합한 현대적인 구조설계법이 될 것임을 확신하는 바이다.
Journal of The Korean Association of Information Education
/
v.25
no.6
/
pp.899-906
/
2021
Data science is a discipline comprised of the academic fields of statistics, computer science, information technology, and domain knowledge. It analyzes data and derives meaningful results using complex technologies. Data science, along with artificial intelligence, is a core technology of the 4th industrial revolution; consequently, universities and companies worldwide are actively developing programs to develop data scientists who require high levels of expertise. In line with this undertaking, the field of elementary education has recognized the importance of data science education and so various studies have been conducted to develop curricula designed to help students understand how to use data. This paper proposes a curriculum for the purpose of educating elementary school teachers who are mostly non-majors in the computer field about data science. Satisfaction analysis was conducted based on questionnaires collected from students to analyze the effectiveness of the data science education proposed in this paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.