• Title/Summary/Keyword: 인공면역 시스템

Search Result 52, Processing Time 0.03 seconds

Design of Autonomous Mobile Robot System Based on Artificial Immune Network and Internet (인공 면역망과 인터넷에 의한 자율이동로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Jung;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.522-531
    • /
    • 2001
  • Recently conventional artificial intelligence(AI) approaches have been employed to build action selectors for the autonomous mobile robot(AMR). However, in these approaches, the decision making process to choose an action from multiple competence modules is still an open question. Many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we attempt to construct an action selector for an AMR based on the artificial immune network and internet. The information from vision sensors is used for antibody. We propose a learning method for artificial immune network using evolutionary algorithm to produce antibody automatically. The internet environment for an AMR action selector shows the usefulness of the proposed learning artificial immune network application.

  • PDF

A Fuzzy Controller Using Artificial Immune Algorithm for Trajectory Tracking of WMR (경로 추적을 위한 구륜 이동 로봇의 인공 면역 알고리즘을 이용한 퍼지 제어기)

  • Kim Sang-Won;Park Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.561-567
    • /
    • 2006
  • This paper deals with a fuzzy controller using IA(Immune Algorithm) for Trajectory Tracking of 2-DOF WMR(Wheeled Mobile Robot). The global inputs to the WMR are reference position and reference velocity, which are time variables. The global output of WMR is a current position. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities on the track of trajectory is necessary. Therefore, a FIAC(Fuzzy-IA controller) is proposed to give velocity compensation in this system. Input variables of fuzzy part are position errors in every sampling time. The output values of fuzzy part are compensation velocities. IA are implemented to adjust the scaling factor of fuzzy part. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.

Negative Selection within an Artificial Immune System for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 시스템에서의 부정적 선택( Negative Selection) 알고리즘)

  • Kim, Jung-Won;Bentley, Peter J.;Choi, Jong-Uk
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.273-276
    • /
    • 2000
  • This paper describes on-going research, applying an artificial immune system to the problem of network intrusion detection. The paper starts by introducing the motivation and rationale of this research. After describing the overall architecture of the proposed artificial immune system fur network intrusion detection, the real network traffic data and its profile features used in this research are explained. As the first step of this effort, the negative selection algorithm, which is one of three significant evolutionary stages comprising an overall artificial immune system, is investigated and initial results are briefly discussed. Finally, the direction of future work is discussed based on this initial result and the contribution of this research is addressed.

  • PDF

An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN (퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어)

  • 오홍민;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.

Autonomous Mobile Robots Navigation Using Artificial Immune Networks and Neural Networks (인공 면역망과 신경회로망을 이용한 자율이동로봇 주행)

  • 이동제;김인식;이민중;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.471-481
    • /
    • 2003
  • The acts of biological immune system are similar to the navigation for autonomous mobile robots under dynamically changing environments. In recent years, many researchers have studied navigation algorithms using artificial immune networks. Conventional artificial immune algorithms consist of an obstacle-avoidance behavior and a goal-reaching behavior. To select a proper action, the navigation algorithm should combine the obstacle-avoidance behavior with the goal-reaching behavior. In this paper, the neural network is employed to combine the behaviors. The neural network is trained with the surrounding information. the outputs of the neural network are proper combinational weights of the behaviors in real-time. Also, a velocity control algorithm is constructed with the artificial immune network. Through a simulation study and experimental results for a autonomous mobile robot, we have shown the validity of the proposed navigation algorithm.

Autonomous Mobile Robot System Design based on a Learning Aritificial Immune Network Structure (인공 면역망 구조 학습에 근거한 자율 이동 로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Joong;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3036-3038
    • /
    • 1999
  • The conventional structure for an action selector of an Autonomous Mobile Robot (AMR) has been criticized for a repeated action. To overcome this problem recently many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we propose a learning aritificial immune network, the learning method is to use Genetic Algorithm (GA). The computer simulation show that the usefulness of the learning immune network.

  • PDF

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System (인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • Sim, Kwee-Bo;Lee, Dong-Wook;Sun, Sang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

Fingerprint Matching Algorithm using MHC Detector Set of String Structure (스트링 구조의 MHC 인식부를 이용한 지문 매칭알고리즘)

  • Sim, Kwee-Bo;Jeong, Jae-Won;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.279-284
    • /
    • 2004
  • Fingerprints have been widely used in the biometric authentication because of its performance, uniqueness and universality. Recently, the speed of identification becomes a very important point in the fingerprint-based security applications. Also, the reliability still remains the main issue in the fingerprint identification. In this paper, we propose the fast and reliable fingerprint matching algorithm based on the process of the 'self-nonself' discrimination in the biological immune system. The proposed algorithm is organized by two-matching stage. The 1st matching stage does the matching process by the use of the 'self-space' and MHC detector string set that are generated from the minutiae and the values of the directional field. Then the 2nd matching stage is made based on the local-structure of the minutiae. The proposed two matching stage reduces matching time while the reliability of the matching algorithm is maintained.

Design and Fabrication of Nasal-Implant-Shaped Scaffold and Regeneration of Nasal Cartilage Tissue for Rhinoplasty (코 성형을 위한 코 보형물 형태의 인공지지체 설계 및 제작과 코 연골조직의 재생)

  • Jung, Jin-Woo;Jang, Jin-Ah;Shim, Jin-Hyung;Kim, Sung-Won;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1111-1117
    • /
    • 2012
  • Implants for rhinoplasty should ideally be biocompatible and possess long-term stability after implantation. Silicone implants are most widely used for rhinoplasty. However, these implants suffer from problems related to high extrusion and infection rates. To minimize these complications, we propose a novel augmentation rhinoplasty technique using tissue engineering. To demonstrate its feasibility, a nasal-implant-shaped scaffold was designed using commercialized CAD software and fabricated using a Multi-head Deposition System, which is a solid freeform fabrication system that dispenses material. In vitro cell proliferation and chondrogenic differentiation tests were carried out using nasal septal chondrocytes.

Adaptive Intrusion Detection Algorithm based on Artificial Immune System (인공 면역계를 기반으로 하는 적응형 침입탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2003
  • The trial and success of malicious cyber attacks has been increased rapidly with spreading of Internet and the activation of a internet shopping mall and the supply of an online, or an offline internet, so it is expected to make a problem more and more. The goal of intrusion detection is to identify unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators in real time. In fact, the general security system based on Internet couldn't cope with the attack properly, if ever. other regular systems have depended on common vaccine softwares to cope with the attack. But in this paper, we will use the positive selection and negative selection mechanism of T-cell, which is the biologically distributed autonomous system, to develop the self/nonself recognition algorithm and AIS (Artificial Immune System) that is easy to be concrete on the artificial system. For making it come true, we will apply AIS to the network environment, which is a computer security system.