DOI QR코드

DOI QR Code

Design and Fabrication of Nasal-Implant-Shaped Scaffold and Regeneration of Nasal Cartilage Tissue for Rhinoplasty

코 성형을 위한 코 보형물 형태의 인공지지체 설계 및 제작과 코 연골조직의 재생

  • Jung, Jin-Woo (Dept. of Mechanical Engineering, POSTECH) ;
  • Jang, Jin-Ah (Integrative Biosciences and Biotechnology, POSTECH) ;
  • Shim, Jin-Hyung (Dept. of Mechanical Engineering, POSTECH) ;
  • Kim, Sung-Won (Dept. of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic Univ. of Korea) ;
  • Cho, Dong-Woo (Dept. of Mechanical Engineering, POSTECH)
  • 정진우 (포항공과대학교 기계공학과) ;
  • 장진아 (포항공과대학교 융합생명공학부) ;
  • 심진형 (포항공과대학교 기계공학과) ;
  • 김성원 (가톨릭대학교 의과대학 이비인후과학교실) ;
  • 조동우 (포항공과대학교 기계공학과)
  • Received : 2012.05.21
  • Accepted : 2012.09.04
  • Published : 2012.11.01

Abstract

Implants for rhinoplasty should ideally be biocompatible and possess long-term stability after implantation. Silicone implants are most widely used for rhinoplasty. However, these implants suffer from problems related to high extrusion and infection rates. To minimize these complications, we propose a novel augmentation rhinoplasty technique using tissue engineering. To demonstrate its feasibility, a nasal-implant-shaped scaffold was designed using commercialized CAD software and fabricated using a Multi-head Deposition System, which is a solid freeform fabrication system that dispenses material. In vitro cell proliferation and chondrogenic differentiation tests were carried out using nasal septal chondrocytes.

이상적인 코 보형물은 환자가 원하는 모양을 그대로 재현하면서, 그 상태를 안정적으로 유지할 수 있는 재료적 특성을 지녀야 한다. 현재 보편적으로 사용되고 있는 실리콘 코 보형물은 면역 반응이나 피부를 뚫고 돌출하는 문제점 등이 보고되고 있다. 이러한 부작용을 최소화하기 위해 본 연구에서는 조직공학 기술을 이용하여 새로운 코 성형술을 제안하고자 한다. 조직공학 기반의 코 성형술의 가능성을 확인하기 위해 코 보형물 형상의 인공지지체를 상용 CAD 소프트웨어와 자유형상제작 기술 중에 하나인 다축 적층 시스템을 이용하여 설계 및 제작하였다. 그리고 코 성형술 인공지지체로서의 사용이 적합한지 확인하기 위해 비중격 유래 연골 세포를 이용하여 세포 증식, 기능 실험을 수행하였다.

Keywords

References

  1. Vuyk, H. D. and Adamson, P. A., 1998, "Biomaterials in Rhinoplasty," Clinical Otolaryngology and Allied Sciences, Vol. 23, No. 3, pp. 209-217. https://doi.org/10.1046/j.1365-2273.1998.00133.x
  2. Byrd H. S. and Hobar P. C., 1993, "Rhinoplasty: A Practical Guide for Surgical Planning," Plastic and Reconstructive Surgery, Vol. 91, No. 4, pp. 642-654. https://doi.org/10.1097/00006534-199304000-00011
  3. Seol, Y.-J., Kang, T.-Y. and Cho, D.-W., 2012, "Solid Freeform Fabrication Technology Applied to Tissue Engineering with Various Biomaterials," Soft Matter, Vol. 8, No. 6, pp. 1730-1735. https://doi.org/10.1039/c1sm06863f
  4. Mohan, N. and Nair, D. N., 2008, "Polyvinyl Alcohol-poly (caprolactone) Semi IPN Scaffold with Implication for Cartilage Tissue Engineering," Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 84B, No. 2, pp. 584-594. https://doi.org/10.1002/jbm.b.30906
  5. Lee, J.-S., Cha, H. D., Shim, J.-H, Jung, J. W., Kim, J. Y. and Cho, D.-W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-Based Scaffold for Bone Tissue Engineering," Journal of Biomedical Materials Research Part A, Vol. 100A, No.7, pp. 1846-1853. https://doi.org/10.1002/jbm.a.34149
  6. Kim, J. Y., Yoon, J. J., Park, E. K., Kim, D. S., Kim, S.-Y. and Cho, D.-W., 2009, "Cell Adhesion and Proliferation Evaluation of SFF-Based Biodegradable Scaffolds Fabricated using a Multi-head Deposition System," Biofabrication, Vol. 1, No. 1, 015002. https://doi.org/10.1088/1758-5082/1/1/015002
  7. Solchaga, L. A., Tognana, E., Penick, K., Baskaran, H., Goldberg, V. M., Caplan, A. I., and Welter, J. F., 2006, "A Rapid Seeding Technique for the Assembly of Large Cell/scaffold Composite Constructs," Tissue Engineering, Vol. 12, No. 7, pp. 1851-1863. https://doi.org/10.1089/ten.2006.12.1851
  8. Stiehler, M., Bunger, C., Baatrup, A., Lind, M., Kassem, M. and Mygind, T., 2009, "Effect of Dynamic 3-D Culture on Proliferation, Distribution, and Osteogenic Differentiation of Human Mesenchymal Stem Cells," Journal of Biomedical Materials Research Part A, Vol. 89A, No. 1, pp. 96-107.
  9. Enobakhare, B. O., Bader, D. L. and Lee, D. A., 1996, "Quantification of Sulfated Glycosaminoglycans in Chondrocyte/Alginate Cultures, by Use of 1,9-Dimethylmethylene Blue," Analytical biochemistry, Vol. 243, No. 1, pp. 189-191. https://doi.org/10.1006/abio.1996.0502
  10. Rao, J., and Otto, W. R., 1992, "Fluorimetric DNA Assay for Cell Growth Estimation," Analytical Biochemistry, Vol. 207, No. 1, pp. 186-192. https://doi.org/10.1016/0003-2697(92)90521-8
  11. Seol, Y.-J., Park, J. and Cho, D.-W., 2011, "Fabrication of Calcium Phosphate Scaffolds Using Projection-based Microstereolithography and Their Effects on Osteogenesis," Trans. of the KSME (B), Vol. 35, No. 11, pp. 1237-1242.
  12. Jung, J. W., Kang, H.-W., Kang, T.-Y., Park, J. H., Park, J., and Cho, D.-W., 2012, "Projection Image-Generation Algorithm for Fabrication of a Complex Structure Using Projection-Based Microstereolithography," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 3, pp. 445-449. https://doi.org/10.1007/s12541-012-0057-8
  13. Kang, H. W. and Cho, D.-W., 2012, "Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity," Tissue Engineering Part C: Methods, Online published.