• Title/Summary/Keyword: 인공간

Search Result 2,089, Processing Time 0.026 seconds

An Enhanced Influence Map with Unit Intransitive Relationship for A.I. of Stratrgy Games (전략 게임 인공지능을 위한 유닛(unit) 상성 정보를 고려한 영향력 분포도(influence map))

  • Park, Jin-Hong;Park, Gyo-Hyeon;Yun, Tae-Bok;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • 전략 게임은 여러 종류의 유닛 (Unit)이 존재한다. 각각의 유닛은 특정 유닛에 대해 강한 면모를 보이기도 하고, 또 다른 종류의 유닛에게는 약한 면모를 가지고 있다. 이를 유닛간의 상성이라고 한다. 상성은 전략적 선택을 하는데 기반이 되고, 심리전을 유발하여 보다 게임에 몰입할 수 있게 해준다. 게임 인공지능이 상성을 고려하도록 하기 위해 각각의 유닛 간에 수치화된 상성 정보가 필요하다. 그리고 생성된 수치 자료를 토대로 유닛의 행동방법을 결정할 인공 지능도 필요하게 된다. 다음 행동 및 이동을 위해 주로 사용되는 방법은 영향력 분포도(influence map)이다. 영향력 분포도는 자신과 상대방의 세력을 수치적으로 파악하는 것이다. 하지만 일반적인 형태의 영향력 분포도로는 각 유닛간의 상성을 표현하기 힘들다. 따라서 본 논문에서는 영향력 분포도를 상성에 맞게 보정할 수 있는 방법을 제시하여 인공지능이 지능적인 행동을 하도록 돕는 방법을 제안한다. 이를 길 찾기 문제에 적용하여 전략적 이동경로를 선택하는 방법을 제시하였다.

  • PDF

Response of Chinese Cabbage, Radish and Soybean Exposed to Sprinkle and Mist of Simulated Acid Rain (인공산성(人工酸性)비의 철수(撤水) 및 분무(噴霧)가 배추, 무, 콩에 미치는 영향(影響))

  • Park, Suen-Do;Lee, Suk-Soon;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.335-340
    • /
    • 1996
  • A green house experiment was conducted to investigate the growth of Chinese cabbage, radish and soybean and change in the chemical properties of the soil after the 10mm application of the simulated acid rain(SAR) of pH 2.7 in the form of sprinkle and mist. It was applied 30 times for Chinese cabbage and radish and 62 times for soybean at the two-day intervals. The results obtained are summarized as follows: 1. Visual damages caused by SAR were dark-brown or red brown leaf spots in Chinese cabbage, and dark-brown and wrinkled leaf margins in radish and soybean. 2. The degree of visual damages became severer as the number of SAR applications increased and it was severer with mist than with sprinkle of SAR. 3. Chlorophyll content was reduced by SAR, but it was not affected by the form of SAR application(sprinkle or mist) in all crops, although it was slightly lower with mist than with sprinkle of SAR. 4. Fresh weight of Chinese cabbage heads and radish roots and grain yield of soybean were reduced by SAR, and were not affected by the form of SAR application. 5. Contents of K, Ca, and Mg in leaves were reduced, while S content increased by SAR in all crops. The forms of SAR application did not affect contents of mineral nutrients in all crops. 6. SAR decreased soil pH and the contents Ca, Mg, and K of soil, while increased $SO_4$ content. However, the contents of soil organic matter, N, and P were not affected by SAR. Forms of SAR application did not affect soil chemical properties either.

  • PDF

Representation of Tools and Inference in Artificial Science Laboratory for Electrical Experiments (전기실험 관련 인공과학실험실에서의 도구지식의 표현 및 추론)

  • 차상철;변영태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.6-8
    • /
    • 1998
  • 전기실험 관련 인공과학 실험실은 중.고등학교 교과과정의 전기실험을 중심으로 한 임의의 모의 실험을 컴퓨터 상에서 가상적으로 진행 할 수 있도록 한 기존의 인공화학실험실에 기반한 시스템이다. 본 논문에서는 실험 진행을 위해 사용되는 도구 지식을 구조적으로 표현하였으며 실험 진행을 위한 도구간의 공간관계를 정의하였다. 그리고 실험의 전체상태를 나타내는 실험실 상황판의 도구간 관계정보를 통해 생성되는 계산 모델을 설계하였다. 계산 모델은 추론 진행의 조건이 되는 도구의 속성값을 결정하며, 이를 통해 추론을 효율적으로 진행 할 수 있다.

  • PDF

Mutual Information Technique for Selecting Input Variables of RDAPS (RDAPS 입력자료 선정을 위한 Mutual Information기법 적용)

  • Han, Kwang-Hee;Ryu, Yong-Jun;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1141-1144
    • /
    • 2009
  • 인공신경망(artificial neural network) 기법은 인간의 두뇌 신경세포의 활동을 모형화한 것으로 오랜 시간동안 발전해 왔으며 여러 분야에서 활용되고 있고 수문분야에서도 인공신경망을 이용한 연구가 활발히 진행되어 왔다. RDAPS와 같은 단기수치예보 자료는 강우의 유무 판단과 같은 정성적인 분석에서 비교적 정확도가 높지만 정확한 강우량의 추정과 같은 정량적인 부분에서는 정확도가 매우 낮으므로 인공신경망 기법과 같은 후처리 기법을 통해서 정확도를 높이게 된다. 인공신경망 기법을 수행할 때, 가장 중요한 것은 입력변수선택(input variable selection)으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 주게 된다. 본 연구에서는 mutual information을 입력 변수 선택 기법으로 채택하여, 인공신경망의 입력변수 선정의 정확도를 알아보고자 한다. Mutual information은 주어진 자료의 엔트로피값을 이용하여 변수들 간의 독립과 종속의 관계를 나타내는 기법으로서, MI값은 '0'에서 '1'의 값을 가지며 '0'에 가까울수록 변수들 간의 관계가 독립적이고 '1'에 가까울수록 종속적인 관계를 나타낸다. 인공신경망의 입력변수선정에 대한 mutual information의 정확도를 알아보기 위해, 기존 입력변수선택 기법과 mutual information을 이용했을 경우의 인공신경망의 처리능력, 정확도를 비교 검토하였다.

  • PDF

Design of an Artificial Emotion for visualizing emotion (감정의 시각화를 위한 인공감정 설계)

  • Ham, Jun-Seok;Son, Chung-Yeon;Jeong, Chan-Sun;Park, Jun-Hyeong;Yeo, Ji-Hye;Go, Il-Ju
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.91-94
    • /
    • 2009
  • 인공감정에 관련된 기존의 연구는 대부분 감정의 인식과 물리적 표현에 중점 되어 연구되었다. 하지만 감정은 성격에 따라 달리 표출되고, 시간에 따라 변화 양상을 갖는다. 또한 새로운 감정자극을 받기 이 전의 감정상태에 따라서 표출 될 감정은 달라진다. 본 논문은 감정을 성격, 시간, 감정간의 관계에 따라 관리하여 현재 표출될 감정을 시각화 해주는 인공감정을 제안한다. 감정을 시각화하기 위해서 본 논문의 인공감정은 감정그래프와 감정장을 갖는다. 감정그래프는 특정 감정을 성격과 시간에 따라 표현하는 2차원 형태의 그래프 이다. 감정장은 감정그래프에서 표현된 서로 다른 종류의 감정들을 시간과 감정간의 관계에 따라 시각화 해주는 3차원 형태의 모델이다. 제안된 인공감정을 통해 감정을 시각화해 보기 위해, 감정의 인식과 물리적 표현을 텍스트 기반으로 간소화시킨 시뮬레이터에 적용했다.

  • PDF

Inflow Forecasting for Reservoir Operation using Artificial Neural Network with RDAPS (인공신경망과 RDAPS 자료를 이용한 유입량 예측)

  • Choi, Gi-An;Lee, Kyoung-Joo;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.23-26
    • /
    • 2009
  • 효과적인 저수지 운영을 위해 가장 중요한 절차는 저수지 유입량을 적절하게 모의하는 것이다. 실시간 저수지 운영의 경우 기존의 물리적인 강우-유출현상에 기초한 수학적인 모형을 이용해서 유입량을 예측하는데 한계가 있으므로 인공신경망과 같이 자료의 특성에 기반한 모형이 효율적인 대안이 될 수 있다. 본 연구에서는 인공신경망(Artificial neural network, ANN)을 이용하여 실시간 저수지 운영을 위해 현재시간을 기준으로 3시간 후, 6시간 후, 9시간 후, 12시간 후의 유입량을 예측하였다. 본 연구의 대상지역은 한강수계의 화천댐 유역으로 기상청 수치예보자료인 RDAPS(Regional Data Assimilation and Prediction System)자료 중에서 강우예측자료를 사용하였다. RDAPS 강우예측자료를 이용한 예측값 결과와 비교하기 위해 지점 강우자료를 사용하였으며, 이 지점 강우자료는 화천댐 유역에 있는 AWS, 기상청, 국토해양부의 지점자료을 이용하였다. RDAPS 강우예측값만을 이용한 유입량 예측결과가 과거 12시간 강우 누적값을 이용한 유입량 예측값과 비슷한 정확도를 가지는 것을 알 수 있었으며, 자료의 효율적인 취득을 고려해야만 하는 실시간 운영의 경우, RDAPS 강우예측자료와 인공신경망을 이용한 모형이 충분히 효과적인 대안이 될 수 있음을 알 수 있다.

  • PDF

Real-time Artificial Neural Network for High-dimensional Medical Image (고차원 의료 영상을 위한 실시간 인공 신경망)

  • Choi, Kwontaeg
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.637-643
    • /
    • 2016
  • Due to the popularity of artificial intelligent, medical image processing using artificial neural network is increasingly attracting the attention of academic and industry researches. Deep learning with a convolutional neural network has been proved to very effective representation of images. However, the training process requires high performance H/W platform. Thus, the realtime learning of a large number of high dimensional samples within low-power devices is a challenging problem. In this paper, we attempt to establish this possibility by presenting a realtime neural network method on Raspberry pi using online sequential extreme learning machine. Our experiments on high-dimensional dataset show that the proposed method records an almost real-time execution.

Real-time ECG Data Bayesian Optimization Analysis for Rehabilitation Robots (재활 로봇을 위한 심전도(ECG) 실시간 데이터 베이지안 최적화 분석 기술)

  • Choi, Jin-Tak;Kang, Kyung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.53-56
    • /
    • 2022
  • 본 논문에서는 심전도(ECG) 센서와 에지 컴퓨팅(Edge computing)을 활용하여 실시간 데이터와 Bayesian optimization을 통한 기계학습 알고리즘으로 재활 로봇에서 발목을 제어할 수 있는 Parameter(외골격 관련) 최적값을 출력한다. 심전도 센서 적용을 기반으로 하는 바이오 데이터 기술, 기계 학습(Bayesian optimization) 모델 접근 방식과 하드웨어 결합으로 재활 로봇 모터를 제어할 수 있는 Parameter 제공과 실시간 모터 제어 운영할 수 있도록 분석 플랫폼을 구축한다. 이 플랫폼을 이용해보다 효과적인 이동형 로봇설계 및 처리 방법을 연결할 수 있는 발판을 마련하였고, 로봇제어에 많이 사용하고 있는 매트랩 시뮬링크(Matlab simulink)를 연결할 수 있는 범용 통신 지원한다. 센서-전처리-인공지능 알고리즘-모터 제어 Parameter로 연계되는 데이터 가공과 처리 방법으로 최근 분석 기법을 적용하여 바이오 데이터 연구 활동과 이동형 재활 로봇 관련 데이터 분석 분야를 쉽게 접근할 수 있도록 한다.

  • PDF

Coding of Remotely Sensed Satellite Image with Edge Region Compensation (에지 영역을 보상한 원격 센싱된 인공위성 화상의 부호화)

  • Kim, Young-Choon;Lee, Kuhn-Il
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.376-384
    • /
    • 1997
  • In this paper, we propose a coding method of remotely sensed satellite image with edge region compensation. This method classifies each pixel vector considering spectral reflection characteristics of satellite image data. For each class, we perform classified intraband VQ and classified interband prediction to remove intraband and interband redundancies, respectively. In edge region case, edge region is compensated using class information of neighboring blocks and gray value of quantized reference bands. Then we perform classified interband prediction using compensated class information to remove interband redundancy, effectively. Experiments on LANDSAT-TM satellite images show that coding efficiency of the proposed method is better than that of the conventional methods.

  • PDF

A Monitoring System Based on an Artificial Neural Network for Real-Time Diagnosis on Operating Status of Piping System (가스배관망 작동상태 실시간 진단용 인공신경망 기반 모니터링 시스템)

  • Jeon, Min Gyu;Cho, Gyong Rae;Lee, Kang Ki;Doh, Deog Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • In this study, a new diagnosis method which can predict the working states of a pipe or its element in realtime is proposed by using an artificial neural network. The displacement data of an inspection element of a piping system are obtained by the use of PIV (particle image velocimetry), and are used for teaching a neural network. The measurement system consists of a camera, a light source and a host computer in which the artificial neural network is installed. In order to validate the constructed monitoring system, performance test was attempted for two kinds of mobile phone of which vibration modes are known. Three values of acceleration (minimum, maximum, mean) were tested for teaching the neural network. It was verified that mean values were appropriate to be used for monitoring data. The constructed diagnosis system could monitor the operation condition of a gas pipe.