DOI QR코드

DOI QR Code

Real-time Artificial Neural Network for High-dimensional Medical Image

고차원 의료 영상을 위한 실시간 인공 신경망

  • Choi, Kwontaeg (Division of Computer Media Engineering, Kangnam University)
  • 최권택 (강남대학교 컴퓨터미디어정보공학부)
  • Received : 2016.12.07
  • Accepted : 2016.12.31
  • Published : 2016.12.31

Abstract

Due to the popularity of artificial intelligent, medical image processing using artificial neural network is increasingly attracting the attention of academic and industry researches. Deep learning with a convolutional neural network has been proved to very effective representation of images. However, the training process requires high performance H/W platform. Thus, the realtime learning of a large number of high dimensional samples within low-power devices is a challenging problem. In this paper, we attempt to establish this possibility by presenting a realtime neural network method on Raspberry pi using online sequential extreme learning machine. Our experiments on high-dimensional dataset show that the proposed method records an almost real-time execution.

최근 인공지능에 대중의 관심으로 인해, 인공신경망을 사용한 의료영상 처리가 학계와 산업계에서 관심이 커져가고 있다. 딥러닝을 이용한 컨볼루션 신경망은 영상을 효과적으로 표현할 수 있는 것으로 증명되었다. 그러나 학습을 위해서는 고성능 H/W 플랫폼이 요구된다. 따라서 고차원의 많은 학습 샘플을 저사양 H/W 플랫폼에서 학습하는 것은 매우 도전적인 문제이다. 본 논문에서는 온라인 인공 신경망을 사용해 라즈베리파이에서 동작할 수 있는 실시간 신경망 알고리즘을 제안하고자 한다. 다양한 실험 결과를 통해 제안된 방법은 실시간 학습이 가능함을 보여주었다.

Keywords

References

  1. Hansang Lee, Minseok Park, Junmo Kim, "Deep Learning in Medical Imaging", Journal of the Korean Society of Radiolog, Vol. 20, pp. 13-18, 2014.
  2. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IJCNN, Budapest, Hungary, Jul. 25-29, 2004, vol. 2, pp. 985-990.
  3. Jiuwen Cao and Zhiping Lin,"Extreme Learning Machine on High Dimensional and Large Data Applications : A Survey", Math. Probl. Eng. 501 (2015).
  4. J. Kim, H. Shin, Y. Lee, and J. Lee, "Algorithm for classifying arrhythmia using extreme learning machine and principal component analysis," in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3257-3260, Lyon, France, August 2007.
  5. S. Saraswathi, S. Sundaram, N. Sundararajan, M. Zimmermann, and M. Nilsen-Hamilton, "ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 2, pp. 452-463, 2011.. https://doi.org/10.1109/TCBB.2010.13
  6. E. Malar, A. Kandaswamy, D. Chakravarthy, and A. Giri Dharan, "A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine," Computers in Biology and Medicine, vol. 42, no. 9, pp. 898-905, 2012. https://doi.org/10.1016/j.compbiomed.2012.07.001
  7. Y. Song and J. Zhang, "Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction," Expert Systems with Applications, vol. 40, no. 14, pp. 5477-5489, 2013. https://doi.org/10.1016/j.eswa.2013.04.025
  8. W. Huang, Y. Yang, Z. Lin, et al., "Random feature subspace ensemble based Extreme Learning Machine for liver tumor detection and segmentation," in Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '14), pp. 4675-4678, Chicago, Ill, USA, August 2014.
  9. X. Mo, Y. Wang, and X. Wu, "Hypoglycemia prediction using extreme learning machine (ELM) and regularized ELM," in Proceedings of the 25th Chinese Control and Decision Conference (CCDC '13), pp. 4405-4409, Guigang, China, May 2013.
  10. J. Xu, H. Zhou, G.B. Huang, Extreme Learning Machine based fast object recognition, in: International Conference on Information Fusion, 2012, pp. 1490-1496.
  11. Lei Zhang , David Zhang, Fengchun Tian, "SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet", Proceedings of ELM-2015 Volume 1, pp 249-263, 2016.
  12. W. Deng, Q. Zheng, and L. Chen, "Regularized extreme learning machine," in Proc. IEEE Symp. CIDM, Mar. 30-Apr. 2, 2009, pp. 389-395.
  13. N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A Fast and Accurate On-line Sequential Learning A lgorithm for Feedforward Networks", IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006 https://doi.org/10.1109/TNN.2006.880583
  14. G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine: Theory and Applications", Neurocomputing, vol. 70, pp. 489-501, 2006 https://doi.org/10.1016/j.neucom.2005.12.126
  15. Kwontaeg Choi , Kar-Ann Toh , Hyeran Byun, "Realtime training on mobile devices for face recognition applications", Pattern Recognition, v.44 n.2, p.386-400, February, 2011 https://doi.org/10.1016/j.patcog.2010.08.009

Cited by

  1. 심층 학습을 활용한 가상 치아 이미지 생성 연구 -학습 횟수를 중심으로 vol.42, pp.1, 2016, https://doi.org/10.14347/kadt.2020.42.1.1
  2. 흉부 방사선영상의 좌, 우 반전 발생 여부 컨벌루션 신경망 기반 정확도 평가 vol.43, pp.2, 2016, https://doi.org/10.17946/jrst.2020.43.2.65
  3. 핵의학 감마카메라 정도관리의 딥러닝 적용 vol.43, pp.6, 2016, https://doi.org/10.17946/jrst.2020.43.6.461