• Title/Summary/Keyword: 인간행동 분류

Search Result 88, Processing Time 0.027 seconds

Study for Human Behavior Classification using Soft-Computing Method (소프트 컴퓨팅에 의한 인간행위 분류에 관한 연구)

  • Jeong, Tae-Min;Choe, U-Gyeong;Kim, Seong-Ju;Kim, Yong-Min;Ha, Sang-Hyeong;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.257-260
    • /
    • 2007
  • 인간의 행위에는 외부환경으로부터 감각정보가 입력되어 반응되는 무의식적인 행동과 뇌에 의한 추론과 인지에 의한 행동으로 분류할 수 있다. 동일한 환경 조건하에서의 인간 행위분류의 통해 활용 적합한 응용프로그램을 개발하여 적용하여 본다. 본 논문에서는 인간의 몸에 부착하여 움직임을 데이터로 분석할 수 있도록 행동인식 시스템을 개발하였다. 인간행동의 인식패턴을 분류하기 위해 Soft-Computing Algorithm을 행위 추출센서에 적용시킨 단독 시스템을 개발하여 센서모듈로부터 인간의 행동 패턴을 분류할 수 있도록 한다. 이러한 센서모듈은 3축 각속도 및 가속도 센서를 부착시킨 모듈로 Micro-Processor를 사용하여 모듈을 구성하였으며, 구축된 모듈은 인간의 몸에 착용하여 인간의 움직임을 디지털 데이터로 변환된다. 변환된 데이터를 무선통신을 통해 워크스테이션에 전달되어 인간행위에 대한 패턴분류 알고리즘 처리가 가능하며, 추출된 데이터를 기반으로 인간의 행동분석과 교정이 이루어 질 수 있도록 한다. 본 논문에서의 최종 시나리오는 운전자의 행동패턴을 이용한 행동 감지 및 서비스 시스템을 구성하는 데에 목적을 둔다.

  • PDF

Control of Ubiquitous Environment using Sensors Module (센서모듈을 이용한 유비쿼터스 환경의 제어)

  • Jung, Tae-Min;Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.190-195
    • /
    • 2007
  • As Ubiquitous era comes, it became necessary to construct environment which can provide more useful information to human in the spaces where people live like homes or offices. On this account, network of the peripheral devices of Ubiquitous should constitute efficiently. For it, this paper researched human pattern by classified motion recognition using sensors module data. (This data processing by Neural network and fuzzy algorithm.) This pattern classification can help control home network system communication. I suggest the system which can control home network system more easily through patterned movement, and control Ubiquitous environment by grasp human's movement and condition.

Control of Ubiquitous Environment using Sensors Module (센서모듈을 이용한 유비쿼터스 환경의 제어)

  • Jeong, Tae-Min;Choe, U-Gyeong;Kim, Seong-Ju;Kim, Seong-Hyeon;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.101-104
    • /
    • 2006
  • 유비쿼터스 시대가 다가오면서 앞으로 가정 및 회사 등 인간이 거주하며 생활하는 공간에서의 좀 더 편리하고 효율적인 다양한 정보를 인간에게 인지시켜 줄 수 있는 환경이 구축되어야한다. 이를 기반으로 유비쿼터스 주변장치들의 네트워크와 인간에게 많은 정보와 편리성이 좀 더 효율적으로 이루어져야 할 것이다. 이를 위해 본 논문에서는 센서모듈에서 추출되는 데이터를 신경망과 퍼지 알고리즘을 사용해 동작인식의 패턴을 분류하여 인간의 사고를 움직임 파악한다. 이러한 패턴의 분류를 통해 홈네트워크 시스템과의 센서모듈의 통신제어가 가능하게 된다 이를 바탕으로 패턴이 분류된 행동들의 명령으로 미리 지정된 간단한 손동작으로 여러 가전기기라든지 홈네트워크 시스템의 제어방식을 더욱 간단히 제어하며, 인간의 건강상태를 파악함으로써 인간행동과 상태에 따른 유비쿼터스 환경의 제어가 이루어 질 수 있는 시스템을 제안한다.

  • PDF

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Tempo-oriented music recommendation system based on human activity recognition using accelerometer and gyroscope data (가속도계와 자이로스코프 데이터를 사용한 인간 행동 인식 기반의 템포 지향 음악 추천 시스템)

  • Shin, Seung-Su;Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.286-291
    • /
    • 2020
  • In this paper, we propose a system that recommends music through tempo-oriented music classification and sensor-based human activity recognition. The proposed method indexes music files using tempo-oriented music classification and recommends suitable music according to the recognized user's activity. For accurate music classification, a dynamic classification based on a modulation spectrum and a sequence classification based on a Mel-spectrogram are used in combination. In addition, simple accelerometer and gyroscope sensor data of the smartphone are applied to deep spiking neural networks to improve activity recognition performance. Finally, music recommendation is performed through a mapping table considering the relationship between the recognized activity and the indexed music file. The experimental results show that the proposed system is suitable for use in any practical mobile device with a music player.

Object surveillance and unusual-behavior judgment using Network Camera (네트워크 카메라를 이용한 물체 감시와 비정상행위 판단)

  • Kim, Jin-Gyu;Kim, Jong-Sun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1910-1911
    • /
    • 2011
  • 본 논문에서는 네트워크 카메라를 이용한 물체 감시 및 비정상 행위의 판단을 위한 실시간 시스템을 제안한다. 제안된 시스템은 먼저 물체의 감시를 위해 SIFT 알고리즘에 기반으로 감시 물체의 특징 정보를 DB화 하고, 히스토그램(Histogram)기법을 활용하여 감시지역을 설정한다. 또한 인간의 행동 및 비정상 행위를 판단하기 위하여, 가상 인간 스켈레톤 모델을 이용하여 입력된 영상에서의 인간의 특징점을 추출한다. 추출된 특징점을 바탕으로 PCA(Principal Component Analysis)를 이용하여 인간의 움직임을 보다 정확하게 표현할 수 있는 특징벡터를 생성하였다. 생성된 특징벡터를 기반으로 퍼지분류기를 이용하여 인간의 행동을 분류하고, 생성된 특징벡터와 특정물체의 거리를 기반으로 인간의 비정상행위를 판단한다. 제안된 방법은 실험을 통해 시스템의 응용 가능성을 증명한다.

  • PDF

Gender Classification of Human Behaviors Using Structure Adaptive Self-organizing Map (구조적응 자기구성 지도를 이용한 인간 행동의 성별 분류)

  • 류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.298-300
    • /
    • 2001
  • 본 논문에서는 구조적응 자기구성 지도 모델을 사용하여 인간 행동의 성별을 분류하는 인식기를 제안하였다. 26명의 사람이 '화난 상태' 혹은 '보통 상태'의 두가지 정서 하에서 '문 두드리기', '손 흔들기', '물건 들어올리기'의 세가지 동작을 수행하는 동안, 행위자 관절점의 속도나 위치 정보로부터 성별을 분류하였다. 또한 SASOM의 성능 비교 분석을 위하여 전통적인 SOM, 다층 퍼셉트론과 거의 두 가지 결합 모델, SASOM와 의사결정트리 결합 모델, 단일 의사 결정트리, $textsc{k}$-최근접 이웃 등의 인식기를 구현하여 성능을 비교분석 하였다. 실험 결과 SASOM 분류기가 가장 높은 이식률을 보였으며 분류기로서 유용함을 알 수 있었다.

  • PDF

Gender Recognition of Human Behavior with Neural Network Classifier (인공 신경망 분류기를 이용한 인간 행동의 성별 인식)

  • 류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.140-142
    • /
    • 2000
  • 인간과 기계가 효과적인 상호작용을 하기 위해서는 컴퓨터 시스템이 인간의 행동을 인식할 수 있어야 한다. 본 연구에서는 인공 신경망을 사용하여 컴퓨터 시스템이 인간의 움직임을 관찰한 후 행위자의 성별을 인식하도록 하는 시스템을 구현하였다. 두 가지 감정상태(보통상태, 화난 상태) 하에서 일어난 인간의 세 가지 동작(문 두드리기, 손 흔들기, 물건 들어올리기)을 대상으로 하여 인간 동작 데이터를 통해 만들어진 학습 데이터를 통해 98.0%의 인식률을 보일 때까지 학습시키고 나서, 이전에 사용하지 않았던 새로운 데이터에 대해 얼마나 설별을 잘 구별해 내는지 실험하였다. 동작이 일어나는 동안 행위자의 몸 여섯 군데에서 속도 데이터를 얻어내서 신경망의 입력값으로 사용하였다. 그 결과 최저 62.3%이상 최고 94.3%까지 인간 성별을 구분해 낼 수 있었고 이는 같은 데이터에 대해서 사람을 통해 실험한 것보다 훨씬 나은 것이다.

  • PDF

Character Analysis Method based on the Value Type of the Human (인간 가치 유형에 기반한 캐릭터 분석 방법론 제안)

  • Song, Minho
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.650-660
    • /
    • 2017
  • This study is to suggest a new method of analyzing personality types of characters in narrative. First, we examined the history of the taxonomy of character types that existed in narrative theories so far. Until now, the classification of character types in narrative theory consisted largely of a formal classification based on roles in narrative, a content classification based on human internal qualities, and a complementary classification in which the two classification criteria are united. The problem with the existing character classification type is difficult to categorize it in spite of the usefulness of the content classification based on human internal qualities. On the other hand, the classification based on the role of the character in the narrative does not help as much as a practical analysis methodology because the classification is formal. In this study, we try to solve this problem by introducing Shalom Schwartz's human value type, and to make human character's value type and human role correlated with each other as a new character analysis methodology. Schwartz's study of value type is a very effective method to grasp the motivation of human behavior, and it seems to be very meaningful in analyzing the directivity of characters.

Deep Learning-based Action Recognition using Skeleton Joints Mapping (스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식)

  • Tasnim, Nusrat;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.