• Title/Summary/Keyword: 이-내비게이션

Search Result 201, Processing Time 0.029 seconds

Automatic Frequency Conversion Algorithm for Vehicle Radio (차량 라디오 주파수 자동변환 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.939-944
    • /
    • 2014
  • Traffic accidents caused by the attention dispersion are increasing and the behavior of the attention dispersion affects the front-observing rate, road keeping ability, and reaction time for a dangerous situation. Many drivers listen to a radio broadcast and they have to change the frequency for continuously listening a radio broadcast of the specific broadcasting station in case of crossing a boundary of the particular area. In this situation, the possibility of a car accident increases, because the attention dispersion of a driver might be occurred. Especially, the risk of a car accident caused by changing the frequency of a radio is more serious in the highway, due to the high speed of a vehicle. In order to reduce the risk of a car accident caused by handling a radio during driving car, in this paper, we propose an automatic frequency conversion algorithm for vehicle radio, which saves normal system frequencies of primary broadcasting stations in a database and determines new frequency of the changed area using the location information obtained from a navigation system in a boundary of the specific area. After determining new frequency, the proposed algorithm selects a frequency with better receiving rate comparing signal-to-noise ratios (SNRs) of two signals corresponding previous and new frequencies.

Fast Sequential Bundle Adjustment Algorithm for Real-time High-Precision Image Georeferencing (실시간 고정밀 영상 지오레퍼런싱을 위한 고속 연속 번들 조정 알고리즘)

  • Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.183-195
    • /
    • 2013
  • Real-time high-precision image georeferencing is important for the realization of image based precise navigation or sophisticated augmented reality. In general, high-precision image georeferencing can be achieved using the conventional simultaneous bundle adjustment algorithm, which can be performed only as post-processing due to its processing time. The recently proposed sequential bundle adjustment algorithm can rapidly produce the results of the similar accuracy and thus opens a possibility of real-time processing. However, since the processing time still increases linearly according to the number of images, if the number of images are too large, its real-time processing is not guaranteed. Based on this algorithm, we propose a modified fast algorithm, the processing time of which is maintained within a limit regardless of the number of images. Since the proposed algorithm considers only the existing images of high correlation with the newly acquired image, it can not only maintain the processing time but also produce accurate results. We applied the proposed algorithm to the images acquired with 1Hz. It is found that the processing time is about 0.02 seconds at the acquisition time of each image in average and the accuracy is about ${\pm}5$ cm on the ground point coordinates in comparison with the results of the conventional simultaneous bundle adjustment algorithm. If this algorithm is converged with a fast image matching algorithm of high reliability, it enables high precision real-time georeferencing of the moving images acquired from a smartphone or UAV by complementing the performance of position and attitude sensors mounted together.

A Study on the Effective VTS Communications Analysis by the Method of VCDF in Busan Port (VCDF 방식을 통한 효율적인 VTS 통신 데이터 분석에 관한 연구 - 부산항을 대상으로 -)

  • Kim, Bong-Hyun;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2016
  • The VTS concept was located as a principal methods of maritime safety administration in world's major harbors and expected to become the pivotal role for the future of the maritime and harbor society with e-Navigation epoch. If recent limelight concept of big-data has been included in aspect of information gathering and analysis with various studies, it's required advanced studies to improve the information analysis capability and application range of the data that can be mining by the VTS. In this study, contrast to other studies that aimed quantitative analysis as communication number, it can be mining the time information and each of the communication VTS for the target vessel, including qualitative analysis, such as the purpose or the type of communication. This comparison across multiple items of the collected information, and presenting the VTS data mining model (VCDF) that can be analyzed for the purpose of analyzing way, type and number of communication by ship's type, also number of violations through VTS communication. First, In Busan port case, it shows frequently information service and shows frequently communicating with particular types of vessels. Second, Passive VTS carried out notwithstanding many kinds of traffic violations due to communication congestion. This arranged information can be used as data for the analysis, as possible the level of traffic for VTSO situational awareness, which pointed to the 'workloads' in 'IALA Guideline' and could be used as a database for future research of e-Navigation.

Semantic Web based Multi-Dimensional Information Analysis System on the National Defense Weapons (시맨틱 웹 기반 국방무기 다차원 정보 분석 시스템)

  • Choi, Jung-Hwoan;Park, Jeong-Ho;Kim, Pyung;Lee, Seungwoo;Jung, Hanmin;Seo, Dongmin
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.502-510
    • /
    • 2012
  • As defense science and technology are developing, smart weapons are being developed continually. The collection and analysis of the future strategic weapon information from all over the world have become a greater priority because information sharing became active. So, a system to manage and analyze heterogeneous defense intelligence is required. Semantic Web is the next generation knowledge information management technology for integrating, searching and navigating heterogeneous knowledge resource. Recently, Semantic Web is wildly being used in intelligent information management system. Semantic Web supports the analysis with the high reliability because it supports the simple keyword search as well as the semantic based information retrieval. In this paper, we propose the semantic web based multi-dimensional information analysis system on the national defense weapons that constructs ontology for various weapons information such as weapon specifications, nations, manufacturers and technologies and searches and analyses the specific weapon based on ontology. The proposed system supports the semantic search and multi-dimensional information analysis based on the relations between weapon specifications. Also, our system improves the efficiency on acquiring smart weapon information because it is developed with ontology based on military experts' knowledge and various web documents related with various weapons and intelligent search service.

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.

Incident Detection for Urban Arterial Road by Adopting Car Navigation Data (차량 궤적 데이터를 활용한 도심부 간선도로의 돌발상황 검지)

  • Kim, Tae-Uk;Bae, Sang-Hoon;Jung, Heejin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Traffic congestion cost is more likely to occur in the inner city than interregional road, and it accounts for about 63.39% of the whole. Therefore, it is important to mitigate traffic congestion of the inner city. Traffic congestion in the urban could be divided into Recurrent congestion and Non-recurrent congestion. Quick and accurate detection of Non-recurrent congestion is also important in order to relieve traffic congestion. The existing studies about incident detection have been variously conducted, however it was limited to Uninterrupted Traffic Flow Facilities such as freeway. Moreover study of incident detection on the interrupted Traffic Flow Facilities is still inadequate due to complex geometric structure such as traffic signals and intersections. Therefore, in this study, incident detection model was constructed using by Artificial Neural Network to aim at urban arterial road that is interrupted traffic flow facility. In the result of the reliability assessment, the detection rate were 46.15% and false alarm rate were 25.00%. These results have a meaning as a result of the initial study aimed at interrupted traffic flow. Furthermore, it demonstrates the possibility that Non-recurrent congestion can be detected by using car navigation data such as car navigator system device.

Enhanced Indoor Localization Scheme Based on Pedestrian Dead Reckoning and Kalman Filter Fusion with Smartphone Sensors (스마트폰 센서를 이용한 PDR과 칼만필터 기반 개선된 실내 위치 측위 기법)

  • Harun Jamil;Naeem Iqbal;Murad Ali Khan;Syed Shehryar Ali Naqvi;Do-Hyeun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.101-108
    • /
    • 2024
  • Indoor localization is a critical component for numerous applications, ranging from navigation in large buildings to emergency response. This paper presents an enhanced Pedestrian Dead Reckoning (PDR) scheme using smartphone sensors, integrating neural network-aided motion recognition, Kalman filter-based error correction, and multi-sensor data fusion. The proposed system leverages data from the accelerometer, magnetometer, gyroscope, and barometer to accurately estimate a user's position and orientation. A neural network processes sensor data to classify motion modes and provide real-time adjustments to stride length and heading calculations. The Kalman filter further refines these estimates, reducing cumulative errors and drift. Experimental results, collected using a smartphone across various floors of University, demonstrate the scheme's ability to accurately track vertical movements and changes in heading direction. Comparative analyses show that the proposed CNN-LSTM model outperforms conventional CNN and Deep CNN models in angle prediction. Additionally, the integration of barometric pressure data enables precise floor level detection, enhancing the system's robustness in multi-story environments. Proposed comprehensive approach significantly improves the accuracy and reliability of indoor localization, making it viable for real-world applications.

A Road Luminance Measurement Application based on Android (안드로이드 기반의 도로 밝기 측정 어플리케이션 구현)

  • Choi, Young-Hwan;Kim, Hongrae;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.

Development of Industrial Embedded System Platform (산업용 임베디드 시스템 플랫폼 개발)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.50-60
    • /
    • 2010
  • For the last half a century, the personal computer and software industries have been prosperous due to the incessant evolution of computer systems. In the 21st century, the embedded system market has greatly increased as the market shifted to the mobile gadget field. While a lot of multimedia gadgets such as mobile phone, navigation system, PMP, etc. are pouring into the market, most industrial control systems still rely on 8-bit micro-controllers and simple application software techniques. Unfortunately, the technological barrier which requires additional investment and higher quality manpower to overcome, and the business risks which come from the uncertainty of the market growth and the competitiveness of the resulting products have prevented the companies in the industry from taking advantage of such fancy technologies. However, high performance, low-power and low-cost hardware and software platforms will enable their high-technology products to be developed and recognized by potential clients in the future. This paper presents such a platform for industrial embedded systems. The platform was designed based on Telechips TCC8300 multimedia processor which embedded a variety of parallel hardware for the implementation of multimedia functions. And open-source Embedded Linux, TinyX and GTK+ are used for implementation of GUI to minimize technology costs. In order to estimate the expected performance and power consumption, the performance improvement and the power consumption due to each of enabled hardware sub-systems including YUV2RGB frame converter are measured. An analytic model was devised to check the feasibility of a new application and trade off its performance and power consumption. The validity of the model has been confirmed by implementing a real target system. The cost can be further mitigated by using the hardware parts which are being used for mass production products mostly in the cell-phone market.

Analysis of Tourism Popularity Using T-map Search andSome Trend Data: Focusing on Chuncheon-city, Gangwon-province (T맵 검색지와 썸트랜드 데이터를 이용한 관광인기도분석: 강원도 춘천을 중심으로)

  • TaeWoo Kim;JaeHee Cho
    • Journal of Service Research and Studies
    • /
    • v.12 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • Covid-19, of which the first patient in Korea occurred in January 2020, has affected various fields. Of these, the tourism sector might havebeen hit the hardest. In particular, since tourism-based industrial structure forms the basis of the region, Gangwon-province, and the tourism industry is the main source of income for small businesses and small enterprises, the damage is great. To check the situation and extent of such damage, targeting the Chuncheon region, where public access is the most convenient among the Gangwon regions, one-day tours are possible using public transportation from Seoul and the metropolitan area, with a general image that low expense tourism is recognized as possible, this study conducted empirical analysis through data analysis. For this, the general status of the region was checked based on the visitor data of Chuncheon city provided by the tourist information system, and to check the levels ofinterest in 2019, before Covid-19, and in 2020, after Covid-19, by comparing keywords collected from the web service sometrend of Vibe Company Inc., a company specializing in keyword collection, with SK Telecom's T-map search site data, which in parallel provides in-vehicle navigation service and communication service, this study analyzed the general regional image of Chuncheon-city. In addition, by comparing data from two years by developing a tourism popularity index applying keywords and T-map search site data, this study examined how much the Covid-19 situation affected the level of interest of visitors to the Chuncheon area leading to actual visits using a data analysis approach. According to the results of big data analysis applying the tourism popularity index after designing the data mart, this study confirmed that the effect of the Covid-19 situation on tourism popularity in Chuncheon-city, Gangwon-provincewas not significant, and confirmed the image of tourist destinations based on the regional characteristics of the region. It is hoped that the results of this research and analysis can be used as useful reference data for tourism economic policy making.