• Title/Summary/Keyword: 이착륙

Search Result 224, Processing Time 0.022 seconds

Trouble Shooting for Fully Automatic Flight Test of Small Scaled Tiltrotor UAV (축소형 틸트로터 무인기의 전자동 비행시험을 위한 문제해결과정)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Koo, Sam-Ok;Lee, Jang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The ground integration test of Smart UAV has been performed according to the flight test plan. The flight test of full scaled model will be performed followed by 4 DOF ground rig test and a tethered hover test. Smart UAV is the first indigenous tiltrotor aircraft which can fly with fast cruise speed and take off or land vertically. In order to prove the flight control law of Smart UAV, the 40% scaled airplane was developed and have been tested. During flight test of small scaled model, many unique and unexpected problems occurred. After clearing these problems, fully automatic flight test was performed successfully. The experiences about many trouble shooting and resolving the problems would be basic material to avoid the unexpected but similar flight test problems hidden behind of the full scaled Smart UAV. This paper presents the detailed procedures of trouble shootings to solve the unique problems which occurred during the flight test of small scaled tiltrotor UAV.

  • PDF

Flight Measurement and Analysis for Signal Influence of CVOR and DVOR by It's Surrounding Obstacle Condition (CVOR과 DVOR의 장애물 영향 비행측정 및 비교 분석)

  • Park, Hyeong-Taek;Hwang, Byong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1206-1212
    • /
    • 2007
  • International Civil Aviation Organization(ICAO) adopted VOR(Very high frequency Omni-Range) as an international standard air navigation system in 1949 and recommended every country to make use of it in formulating air route and guiding take-off and landing of an aircraft. VOR is quite a useful navigation system so that more than 2,000 VORs are currently installed all over the world including 39 in the Republic of Korea; however, VOR signal could be easily affected by its circumstance like a mountainous area because it provides navigation information to an aircraft through AM and FM of VHF carrier. There are two types of VOR which are defined according to a design methode. Therefore this study intends to investigate which type of VOR is suitable for mountainous area. For that purpose, the performance of each CVOR and DVOR is measured and analyzed by using an aircraft equipped with measuring instruments. The analyzed result will be applied and utilized in selecting the VOR type, so it could be a feasible solution of problem related to the VOR relocation due to its insufficient performance in the future.

A Study on the attitude control of the quadrotor using neural networks (신경회로망을 이용한 쿼드로터의 자세 제어에 관한 연구)

  • Kim, Sung-Dea
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1019-1025
    • /
    • 2014
  • Recently, the studies of the Unmanned Aerial Vehicle(UAV) has been studied a variety from military aircraft to civilian aircraft and for general hobby activity aircraft. In particular, for small unmanned aircraft research for the ease of turning and hovering and Vertical-Off Take Landing(VTOL), have been studied mainly quadrotor unmanned aircraft is a type suitable for this study of small unmanned aircraft. The studies of these unmanned aircraft is the kinetic analysis requires complex processes, because these support by the aerodynamic forces on the unmanned aircraft study, and the controller design based on these dynamical analysis and experimental model analysis. In this paper, after the implementation of the basic attitude control based on a general PID controller, we propose concept design of the attitude control method on quadrotor attitude control by using the reinforcement learning algorithm of neural networks for non-linear elements not considered in the controller design.

Design of Control System for Organic Flight Array based on Back-stepping Controller (Backstepping 기법을 이용한 유기적 비행 어레이의 제어시스템 설계)

  • Oh, Bokyoung;Jeong, Junho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.711-723
    • /
    • 2017
  • This paper proposes a flight control system for an organic flight array(OFA) which has a new configuration to consist of multi modularized ducted-fan unmanned aerial vehicles (UAVs). The OFA is able to apply to various missions such as indoor reconnaissance, communication relay, and radar jamming by using capability of hover flight. The OFA has a distinguished advantage due to reconfigurable structure to assemble or separate with respect to its missions or operational conditions. A dynamic modelling of the OFA is derived based on equations of motion of the single ducted-fan modules. In order to apply nonlinear control method, an affine system of attitude dynamics is derived. Moreover, the control system is composed of a back-stepping controller for attitude control and a PID controller for position control. Then the performance of the proposed controller is verified via a numerical simulation under wind disturbance.

A Suggestion of Methodologies for Modular and Integrated Verification of WA-DGNSS Reference Station Software Suitable for Validation & Verification of DO-278 (DO-278의 Validation & Verification에 적합한 WA-DGNSS 기준국 소프트웨어의 모듈별 통합 검증 방법론 제시)

  • Yoon, Donghwan;Park, Byung-Woon;Choi, Wan-Sik;Kee, Changdon;Seo, Seungwoo;Park, Junpyo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • WA-DGNSS is a system to service for users using a satellite which received correction data from ground station that calculates the relative errors of the tracked GNSS signals and sends to a satellite. Users are guaranteed the reliability of the GNSS signal and the accuracy of positioning. ICAO recommends the application of WA-DGNSS for the airplane taking off and landing process. In this paper, we suggests methods to verify of the pre-developed WA-DGNSS reference software constituting modules and an integration test process refer to the RTCA DO-278 which is a document for the development process of an aeronautics software. Also, we statistically verified the reference software test through our methods. And then, we confirmed to performance the function of the reference software properly.

Development for Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 활용한 활주로 가시거리 예측 모델 개발)

  • Ku, SungKwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.435-442
    • /
    • 2017
  • The runway visual range affected by fog and so on is one of the important indicators to determine whether aircraft can take off and land at the airport or not. In the case of airports where transportation airplanes are operated, major weather forecasts including the runway visual range for local area have been released and provided to aviation workers for recognizing that. This paper proposes a runway visual range estimation model with a deep neural network applied recently to various fields such as image processing, speech recognition, natural language processing, etc. It is developed and implemented for estimating a runway visual range of local airport with a deep neural network. It utilizes the past actual weather observation data of the applied airfield for constituting the learning of the neural network. It can show comparatively the accurate estimation result when it compares the results with the existing observation data. The proposed model can be used to generate weather information on the airfield for which no other forecasting function is available.

Side Force Modeling of Landing Gear and Ground Directional Controller Design for UAV (무인기용 착륙장치 측력 모델링 및 지상활주 제어기 설계)

  • Cho, Sung-Bong;Ahn, Jong-Min;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.997-1003
    • /
    • 2014
  • This paper describes modeling process to obtain precise landing gear model which is necessary to design a control law for ground auto-taxi, auto take-off/landing of UAV. In this paper, landing gear side force modeling is studied to complete a landing gear model of UAV. Side force modeling is performed by calculating cornering angle including steering angle. And ground directional controller is designed by using nose wheel steering and rudder steering at the same time to control course angle error. Accuracy of landing gear side force modeling and ground directional controller is proved by comparing of auto-taxi test results with simulation results.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.

Technical Review of the Proposed Engines for SUAV (스마트무인기 후보엔진 기술검토)

  • Jun Yong-Min;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • For SUAV is required to have the capacity of VTOL and fast forward flight, the SUAV development program has decided to adopt the tiltrotor mechanism which includes helicopter and turboprop mechanisms. From the engine point of view, the key engine parameters such as engine operating mechanism, engine control scheme, the dynamics characteristic of power train, engine intake/exhaust concept, and engine installation requirements should fulfill the requirements of the two different mechanisms, helicopter and turboprop. And for the maximum efficiency of the rotor, rotational speed for the two modes are 20% different, the power train shall find a way to make it so. Meeting these specific requirements for the tiltrotor mechanism, this research begins with a conventional OTS(off-the-shelf) turboshaft engine survey and minimizes engine modification to develop an economical propulsion system. The engine technical review has been performed on the basis of those requirements and capabilities.

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.