• Title/Summary/Keyword: 이착륙

Search Result 224, Processing Time 0.026 seconds

Ultrasonic Rangefinder Spike Rejection Method Using Wavelet Packet Transform (웨이블릿 패킷 변환을 이용한 초음파 거리계 스파이크 제거 기법)

  • Kim, Sung-Hoon;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.298-304
    • /
    • 2016
  • In this paper, a wavelet packet transform method is proposed for improving the altitude control performance of quadrotor UAV using an ultrasonic rangefinder. A ground tests are conducted using an ultrasonic rangefinder that is much used for vertical takeoff and landing. An ultrasonic rangefinder suffers from signal's spike due to specular reflectance and acoustic noise. The occurred spikes in short time span need to be analyzed at both sides time and frequency domain. The analyzed spikes of the ultrasonic rangefinder using a wavelet packet transform. Compared with the discrete wavelet transform, the wavelet packet decomposition can obtain more abundant time-frequency localization information, so it is more suitable for analyzing and processing ultrasonic signals spike. Experimental results show that it can effectively remove the spikes of the ultrasonic rangefinder.

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.

Analysis of Runway Occupancy Time Using ADS-B Message about Landing Airplane (ADS-B를 이용한 착륙 항공기의 활주로 점유 시간 분석)

  • Ku, SungKwan;Baik, Hojong
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Runway and taxiway is base facilities for aircraft take off and landing and runway capacity is one of major factor for airport capacity. Runway occupancy time is affect on the runway capacity. The identification of aircraft using taxiway by analysis of airport ground surveillance data and the measurement of pass time on the points is general method for the confirmation of the runway occupancy time. This study is runway occupancy time analysis of landing airplane using ADS-B message, in this study we surveyed landing aircraft runway occupancy time and analysis of serviced record using taxiway include rapid exit taxiway. The result of analysis is to confirm the different of landing direction and aircraft category on the same runway caused by structure of airport. Also the result of runway occupancy time analyzed data, it is base input data for the air transportation simulation.

Spike Rejection Method for Improving Altitude Control Performance of Quadrotor UAV Using Ultrasonic Rangefinder (초음파 거리계를 이용하는 쿼드로터 무인항공기의 고도 제어 성능 향상을 위한 스파이크 제거 기법)

  • Kim, Sung-Hoon;Choi, Kyeung-Sik;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this paper, a stationary wavelet transform method is proposed for improving the altitude control performance of quadrotor UAV using an ultrasonic rangefinder. A ground tests are conducted using an ultrasonic rangefinder that is much used for vertical takeoff and landing. An ultrasonic rangefinder suffers from signal's spike due to specular reflectance and acoustic noise. The occurred spikes in short time span need to be analyzed at both sides time and frequency domain. It was known that stationary wavelet transform is the transferring solution to the problem occurred by down sampling from DWT also more efficient to remove noise than DWT. The analyzed spikes of the ultrasonic rangefinder using a stationary wavelet transform and experimental results show that it can effectively remove the spikes of the ultrasonic rangefinder.

Flight Measurement and Analysis of VOR Signal Influence from the Long Distance Surrounding Obstacles (원거리 장애물이 VOR에 미치는 영향의 비행측정 및 분석)

  • Park, Hyeong-Taek;Hwang, Byong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • International Civil Aviation Organization(ICAO) adopted VOR(Very high frequency Omni-Range) as an international standard air navigation system in 1949 and recommended every country to make use of it in formulating air route and guiding take-off and landing of an aircraft. VOR is quite a useful navigation system so that more than 2,000 VORs have been installed all over the world including 39 in Korea: however, VOR signal could be easily affected by its circumstance like a mountainous area because it provides navigation information through AM and FM of VHF carrier. Therefore this study intends to investigate how much VOR performance is affected by its circumstances. For this purpose, the performance of the 10 VORs influenced by 24 obstacles are measured and analyzed by using an aircraft equipped with measuring instruments. This study may give us a feasible solution of problems related to the VOR siting in the future.

  • PDF

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.

Design of Auto Race-Track and Figure-8 Flight Mode for UAV (무인기의 자동 장주비행 및 8자 비행모드 설계)

  • Lee, Sangjong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.851-857
    • /
    • 2014
  • This paper addresses the design of the auto race-track and figure-8 flight mode which can be applied to expand the loitering flight mode and increase the safety of UAV. To implement these flight modes, necessary waypoints and entry points can be calculated automatically from several information of the ground control system. The flight logic is proposed to pass the desired waypoints as well as entry points and transfer to the desired flight path by combining the light-of-sight and loitering guidance controller. The proposed algorithm and logic is verified using the 6-DOF UAV model and nonlinear simulation under the several flight conditions.

Trajectory Tracking Controller Design using L1 Adaptive Control for Multirotor UAVs (L1 적응 제어 기법을 이용한 멀티로터 무인 항공기의 궤적 추종 기법 설계)

  • Jung, Yeundeuk;Cho, Sungwook;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.842-850
    • /
    • 2014
  • This paper presents a trajectory tracking controller for rotorcraft UAVs to improve the tracking performances in the presence of various uncertainties. The proposed tracking method consists of a velocity guidance law based on the relative distance and L1 adaptive augmentation loop for tracking the velocity commands. In the proposed structure, the desired velocity generated by the guidance law is the reference value of the adaptive controller for accurate path tracking. In the guidance law, the desired acceleration is generated based on the relative distance and its derivatives, and then the velocity command of the inner control loop is calculated by integrating the accelerations. $L_1$ augmentation loop supplements the linear controller to guarantee the flight performances such as a tracking accuracy in the presence of the uncertainties. The proposed controller was validated in actual flight tests to successfully demonstrate its capability using a quadrotor UAV.

Attitude Control using Quantitative Feedback Theory of a Quad-Rotor Vehicle with Plant Parametric Uncertainty (플랜트 파라미터의 불확실성을 포함한 4-회전익(Quad-Rotor) 비행체의 정량적 궤환 이론을 이용한 자세 제어)

  • Lee, ByungSeok;Heo, Moon-Beom;Lee, Joon Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.243-253
    • /
    • 2014
  • This paper deals with the Quantitative Feedback Thoery(QFT) guaranteeing robustness in spite of the plant parametric uncertainty. In the frequency domain, the QFT guarantees the robustness of the design specification on the uncertainty of plant parameters and disturbance. In order to use the QFT, a selected plant is a Quad Rotor Vehicle(QRV) which has excellent maneuverability and possibility of vertical take-off and landing like the helicopter. And attitude control is examined the possibility satisfied the requirement specification under the setting parametric uncertainty of motors driving 4-blades. Additionally, in an attitude control, the pre-filter considering parameter range and operating range of a QRV was used. For these purpose, in this paper, by using QFTCT, that is the QFT Control Toolbox designing the controller in MATLAB by the QFT, each design phases are introduced.