• 제목/요약/키워드: 이족 보행 로봇

검색결과 115건 처리시간 0.033초

인체형 이족 보행로봇의 개발 (Development of Human-Sized Biped Robot)

  • 최형식;박용헌;이호식;김영식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR performed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

자립형 이족 보행 로봇의 개발 (Development of Autonomous Biped Walking Robot)

  • 김영식;오정민;백창열;우정재;최형식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

FRI를 이용한 이족 보행 로봇의 안정도 해석 (Stability Analysis of a Biped Robot using FRI)

  • 김상범;최상호;김종태;박인규;김진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.574-577
    • /
    • 2001
  • This paper presents the comparison of FRI(Foot Rotation Indicator) point and ZMP(Zero Moment Point) in biped robot stability. We showed FRI may be employed as a useful tool in stability analysis in biped robot. Also, we proposed the balancing joint trajectory derived from FRI point equation for stable gait. The numerical calculation routines and walking algorithms for simulation are performed by MATLAB. The procedure is composed of the leg trajectory planning, the generation of balancing trajectory, and the verification of dynamic stability.

  • PDF

이족 보행로봇 개선모델의 개발 (Development of Human-Sized Biped Robot of improvement in model)

  • 최형식;박용헌;정경식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.458-461
    • /
    • 1997
  • We have developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gar ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. For the purpose of autonomous walking and higher performance, we improved the previous developed BWR. We improved the motor drive efficiency, designed the ball screw actuator in a modular type, and simplified the electric wires. Through this modification, we achieved better performance in walking.

  • PDF

이족로봇의 동적 보행계획과 역동역학 해석 (Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot)

  • 박인규;김진걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

이족 보행 로봇의 궤적의 최적화 계획에 관한 연구 (A Study on the Trajectory Optimization Planning of Biped Walking Machine)

  • 김창부;조현석
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

이족 보행 로봇의 그래픽 인터페이스 개발 (Development of Graphic interface for Biped walking robot)

  • 김영식;전대원;최형식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.507-510
    • /
    • 2002
  • We developed a human-sized BWR(biped walking robot) named KUBIRI driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIRI was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize informations on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interfacer was developed based on the open inventor tool. Through the graphic interfacer, the control input of KUBIRI is performed.

  • PDF

데이터 기반보행 제어를 위한 다리 간 충돌 회피 기법 (Avoiding Inter-Leg Collision for Data-Driven Control)

  • 이윤상
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권2호
    • /
    • pp.23-27
    • /
    • 2017
  • 본 논문에서는 기존에 발표되었던 데이터 기반보행제어 기법의 단점을 보완하는 다리 간 충돌 회피 기법을 제안한다. 2010년에 제안된 Lee et. al. 의 데이터 기반 이족 보행 제어 기법 [1]은 경우에 따라 보행 중 두 다리가 서로 교차하는 동작을 만들어내기도 하는데, 이는 실제 사람 혹은 이족 보행 로봇의 보행에서는 실현될 수 없는 동작이다. 본 논문에서는 스윙 힙(swing hip)의 각도를 변경하는 피드백 규칙에 스탠스 레그 (stance leg)와의 충돌을 피할 수 있는 추가적인 각도조절을 도입하여 스윙 풋 (swing foot)이 스탠스 풋 (stance foot)을 지난 이후에만 스탠스 풋보다 안쪽으로 움직일 수 있도록 하는 알고리즘을 제안한다. 이를 통해 기존의 제어기 동작 방식에 최소한의 변경과 추가적인 계산만을 더하여 두 다리가 교차하지 않는 안정적인 보행 결과를 만들어 낼 수 있다.