• Title/Summary/Keyword: 이온성 전도

Search Result 999, Processing Time 0.028 seconds

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries (신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체)

  • Kwon, O. Hyeon;Lee, Ji Hye;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.93-99
    • /
    • 2021
  • In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.

A Study on the Preparation and Characterization of Gel Polymer Electrolyte from Poly(ethylene glycol) Diacrylate in Sonic Liquid (폴리(에틸렌 글리콜) 디아크릴레이트/이온성 액체 젤형 고분자전해질의 제조 및 특성 연구)

  • Shin Bora;Cho Mi Suk;Kim Dukjoon;Sim Sang Jun;Kim Ji-Heung;Lee Dong Hyun;Nam Jae-Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.216-220
    • /
    • 2005
  • A new type of polymer gel electrolyte was prepared from poly(ethylene glycol) diacrylate(PEGDA) and 1-butyl-3-methylimidazolium bis((trifluorornethyl) sulfonyl) amide$(BuMeIm^+Tf_2N^-)$ ionic liquid. The effect of the ionic liquid on ionic conductivity of the gel polymer electrolyte was investigated. It was observed that the gel polymer electrolyte having the ionic liquid exhibited higher ionic conductivity $(ca.\;10^{-3}S/cm)$ as well as electrochemical stability than that using organic solvent.

Electrochemical Ceramic Membrane Reactors (이온전도성 세라믹 기반 고온 전기화학 멤브레인 반응기 응용기술)

  • Uhm, Sunghyun;Park, Jae Layng;Seo, Minhye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.337-343
    • /
    • 2013
  • Membrane reactors have been showing a promising future and attracted increasing attention in the scientific community as they possess advantages in terms of enhanced catalytic activity and selectivity, combination of processes (reaction and separation), simplicity in process design, and safety in operation. In particular, solid electrolyte membrane reactor principles are realized in fuel cells, electrolyzers and reactors for hydrogenation of carbon dioxide and other economically viable reactions. In this review, as a young generation of ion conducting materials, high temperature proton conductors are discussed in terms of the current status of material development and their various applications.

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Absorption of Ionic Liquids at the pre-Combustion condition (연소전 조건에서 이온성액체의 흡수특성)

  • You, Seung-Han;Choi, Su-Hyun;Baek, II-Hyun;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.342-344
    • /
    • 2011
  • 본 논문에서는 최근에 주목 받고 있는 물질인 이온성액체를 실험실 규모로 제조하여 회분식 기-액흡수평형(VLE)장치를 이용하여 압력에 따른 이산화탄소 용해도 및 초기흡수속도를 상용 이온성액체인 PF6와.비교분석 하였다. 반응온도 $40^{\circ}C$조건에서 운전하였으며, 이산화탄소 압력 0~40기압 범위에서 수행되었다. 실험결과 [beim] ethyl sulfite 합성 이온성액체가 초기흡수속도에서 상용 이온성액체인 $PF_6$ 보다 높은 흡수력을 보였다.

  • PDF

Phase Transition and ionic Conductivity of Cesium Hydrogen Sulfate-PAN Composites (황산수소 세슘-PAN 복합체의 상전이와 이온 전도성)

  • 최병구;박상희
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.149-153
    • /
    • 2004
  • The cesium hydrogen sulfate (CsHSO$_4$) crystal is a superprotonic conductor above 140$^{\circ}C$ and possesses protonic conductivity three to low orders of magnitude higher than that at room temperature. Recently, the possibility of it as an electrolyte material for fuel cell system draws much attention. However, its plasticity and absorption of humidity place a limitation on its application. In this study, composites consisting of CsHSO$_4$ and polyacrylonitrile were prepared, and their phase transition properties and the ionic conductivities were evaluated. When the content of CsHSO$_4$ was about 80 vol%, a mechanically strong film with the protonic conductivity of 1${\times}$10$\^$-3/ Scm$\^$-1/ were made.

그라핀 전극을 이용한 유연 투명 구동기 제작 및 특성 평가

  • Park, Yun-Jae;Im, Yeong-Jin;Im, Gi-Hong;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.286.2-286.2
    • /
    • 2013
  • 기존의 이온성 고분자-금속 복합체(IPMC)는 백금(Pt)전극을 이온성 전기활성 고분자(Ionic electroactive polymer)인 나피온에 무전해 도금으로 만들어졌다. 본 연구는 백금전극을 그래핀으로 대체하여 투명 이온성 고분자-그래핀 복합체(IPGC)를 제작하였다. 그래핀은 근적외선 화학기상증착법(NIR-CVD)으로 전이금속 (Cu, Ni) 위에 탄화수소 가스(CH4)를 이용하여 성장하였다. 전이 금속위에 성장된 그래핀을 나피온 양쪽면에 van der Waals 결합력을 이용하는 습식 전이공정으로 전극을 형성하였다. IPGC는 면 저항(4-point probe), 투과도(UV/Vis spectrometer) 및 라만 분광법(Micro Raman spectroscopy)의 측정으로 그래핀 전극의 특성평가를 하였고, 전계방사 주사전자현미경(Field Emisson Scanning Electron Microscope; FE-SEM)을 사용하여 IPGC의 구조적 특성을 확인하였다. 제작된 IPGC의 성능은 백금전극을 이용한 IPMC의 변위(displacement), 힘(force), 작동 주파수(Operating frequency) 분석을 통해 비교 평가하였다.

  • PDF

Preparation and Characterizations of Ferroxane-Nafion Composite Membranes for PEMFC (PEMFC용 Ferroxane-나피온 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Oh, Gyu-Hyeon;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, the organic-inorganic composite membranes composed of iron oxide (Ferroxane) and Nafion were developed as an alternative proton exchange membranes (PEMs) in proton exchange membrane fuel cell (PEMFC). Acetic acid-stabilized lepidocrocite (${\gamma}$-FeOOH) nanoparticles (ferroxane) was synthesized, and the ferroxane-Nafion composite membranes were prepared by mixing Nafion with the ferroxane. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, thermal stability, etc. As a result, the ferroxane-Nafion composite membranes showed higher proton conductivity, IEC, thermal stability than Nafion recast membranes. The proton conductivity and IEC of the composite membrane with the best performance were $0.09S\;cm^{-1}$ and $0.906meq\;g^{-1}$, respectively.

Optical properties of Rare-Earth-Implanted GaN Epilayer (희토류 원소를 이온주입법으로 도핑한 GaN 박막의 광전이 특성)

  • Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.210-214
    • /
    • 2007
  • We have studied optical transitions of Gd-implanted GaN epilayers. Photoluminescence transition intensity at 590 nm at T=5 K diminishes and its center position moves to short avelength (blue shift) with increasing temperature up to 200 K. Above T=200 K, the transition intensity increases with increasing temperature while the center position remains the same. We believe that such anomalous optical transition behavior is due to the effect of rare-element in the semiconductor host material and lattice imperfection which was occurred during the implantation process well as.