Electrochemical Ceramic Membrane Reactors

이온전도성 세라믹 기반 고온 전기화학 멤브레인 반응기 응용기술

  • Uhm, Sunghyun (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Park, Jae Layng (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Seo, Minhye (Advanced Materials & Processing Center, Institute for Advanced Engineering)
  • 엄성현 (고등기술연구원 신소재공정센터) ;
  • 박재량 (고등기술연구원 신소재공정센터) ;
  • 서민혜 (고등기술연구원 신소재공정센터)
  • Published : 2013.08.10

Abstract

Membrane reactors have been showing a promising future and attracted increasing attention in the scientific community as they possess advantages in terms of enhanced catalytic activity and selectivity, combination of processes (reaction and separation), simplicity in process design, and safety in operation. In particular, solid electrolyte membrane reactor principles are realized in fuel cells, electrolyzers and reactors for hydrogenation of carbon dioxide and other economically viable reactions. In this review, as a young generation of ion conducting materials, high temperature proton conductors are discussed in terms of the current status of material development and their various applications.

멤브레인 반응기는 멤브레인과 반응기를 결합하여 반응과 분리의 단위공정을 하나로 결합함으로써 전체공정을 단순화하고 반응효율을 높이고자 하는 혁신 기술로써, 멤브레인을 이용한 생성물의 선택적 제거를 통해 열역학적 평형을 뛰어넘는 전환율, 부반응물 생성 억제에 의한 반응 효율 및 선택성을 향상시킬 수 있다. 특히 이온전도성 세라믹을 이용한 멤브레인 반응기는 연료전지의 개발, 고순도 산소/수소의 분리/정제, 이산화탄소의 전환 및 다양한 화학제품제조에 까지 응용될 수 있기 때문에 시장의 확대와 더불어 크게 발전할 수 있을 것으로 기대된다. 본 총설에서는 수소이온 전도성 세라믹 멤브레인 반응기에 대한 연구동향과 다양한 응용분야 및 향후 전망 등에 고찰해 보고자 한다.

Keywords

References

  1. R. Dittmeyer and J. Caro, Catalytic Membrane Reactors; Handbook of Heterogeneous Catalysis, 10, 2198, John Wiley & Sons, Inc. (2008).
  2. A. Basile and F. Gallucci, Membranes for Membrane Reactors: Preparation, Optimization and Selection, John Wiley & Sons, Inc. (2010).
  3. J. Zaman and A. Chakma, J. Membrane Sci., 92, 1 (1994). https://doi.org/10.1016/0376-7388(94)80010-3
  4. F. Gallucci, E. Fernandez, P. Corengia, and M.-V. S. Annaland, Chem. Eng. Sci., 92, 40 (2013). https://doi.org/10.1016/j.ces.2013.01.008
  5. T. J. Mazanec, Solid State Ionics, 70, 11 (1994).
  6. M. Stoukides, Catal. Rev. Sci. Eng., 42, 1 (2000). https://doi.org/10.1081/CR-100100259
  7. K. Sundmacher, L. K. Rihko-Struckmann, and V. Galvita, Catal. Today, 104, 185 (2005). https://doi.org/10.1016/j.cattod.2005.03.074
  8. T. Thampan, S. Malhotra, J. Zhang, and R. Datta, Catal. Today, 67, 15 (2001). https://doi.org/10.1016/S0920-5861(01)00278-4
  9. J. Larminie and A. Dicks, Fuel Cell Systems Explained 2nd Edition, John Wiley and Sons, Inc. (2003).
  10. S. Mclntosh and R. J. Gorte, Chem. Rev., 104, 4845 (2004). https://doi.org/10.1021/cr020725g
  11. H. Uchida, N. Maeda, and H. Iwahara, Solid State Ionics, 11, 117 (1983). https://doi.org/10.1016/0167-2738(83)90048-6
  12. H. Iwahara, H. Uchida, and S. Tanaka, Solid State Ionics, 9, 1021 (1983).
  13. H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, J. Electrochem. Soc., 135, 529 (1988). https://doi.org/10.1149/1.2095649
  14. K. D. Kreuer, Annu. Rev. Mater. Res., 33, 333 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  15. K. D. Kreuer, Solid State Ionics, 136, 149 (2000).
  16. T. Norby, M. Wideroe, R. Glocker, and Y. Larring, Dalton T., 3012 (2004).
  17. R. Reijers and W. Haije, Literature Review on High Temperature Proton Conducting Materials, ECN-E-08-091, ECN, Netherlands (2008).
  18. R. C. T. Slade, and N. Singh, Solid State Ionics, 46, 111 (1993).
  19. D. A. Stevenson, N. Jiang, R. M. Buchanan, and F. E. G. Henn, Solid State Ionics, 62, 279 (1993). https://doi.org/10.1016/0167-2738(93)90383-E
  20. S. V. Bhide and A. V. Virkar, J. Electrochem. Soc., 146, 2038 (1999). https://doi.org/10.1149/1.1391888
  21. P. Babilo and S. M. Haile, J. Am. Ceram. Soc., 88, 2362 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
  22. S. Tao and J. T. S. Irvine, Adv. Mater., 18, 1581 (2006). https://doi.org/10.1002/adma.200502098
  23. C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, Adv. Mater., 18, 3318 (2006). https://doi.org/10.1002/adma.200601366
  24. A. L. Despotuli and V. I. Nikolaichic, Solid State Ionics, 60, 275 (1993). https://doi.org/10.1016/0167-2738(93)90005-N
  25. J. Maier, Nat. Mater., 4, 805 (2005). https://doi.org/10.1038/nmat1513
  26. H. Iwahara, Solid State Ionics, 125, 271 (1999). https://doi.org/10.1016/S0167-2738(99)00185-X
  27. K. Xie, Y. Zhang, G. Meng, and J. T. S. Irvine, J. Mater. Chem., 21, 195 (2011). https://doi.org/10.1039/c0jm02205e
  28. F. Lefebvre-Joud, G. Gauthier, and J. Mougin, J. Appl. Electrochem., 39, 535 (2009). https://doi.org/10.1007/s10800-008-9744-7
  29. U. S. Patent 7, 157,166 (2007).
  30. C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, Renew. Sust. Energ. Rev., 15, 1 (2011). https://doi.org/10.1016/j.rser.2010.07.014
  31. C. Graves, S. D. Ebbesen, and M. Mogensen, Solid State Ionics, 192, 398 (2011). https://doi.org/10.1016/j.ssi.2010.06.014
  32. A. J. Morris, G. J. Meyer, and E. Fujita, Acc. Chem. Res., 12, 1983 (2009).
  33. S. Liu, X. Tan, K. Li, and R. Hughes, Catal. Rev., 43, 147 (2001). https://doi.org/10.1081/CR-100104388
  34. G. Marnellos and M. Stoukides, Solid State Ionics, 175, 597 (2004). https://doi.org/10.1016/j.ssi.2004.03.038
  35. K.-H. Song, J.-h. Ryu, and J.-S. Chung, Korean Chem. Eng. Res., 47, 519 (2009).
  36. C. G. Vayenas and C. G. Koutsodontis, J. Chem. Phys., 128, 182506 (2008). https://doi.org/10.1063/1.2824944
  37. P. Vernoux and C. G. Vayenas, Prog. Surf. Sci., 86, 83 (2011). https://doi.org/10.1016/j.progsurf.2011.05.001
  38. Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, Energy Environ. Sci., 3, 1382 (2010). https://doi.org/10.1039/c0ee00092b
  39. J. A Trainham, J. Newman, C. A. Bonino, and P. G. Hoertz, Curr. Opin. Chem. Eng., 1, 204 (2012). https://doi.org/10.1016/j.coche.2012.04.001
  40. T. J. Meyer, J. M. Papanikolas, and C. M. Heyer, Catal. Lett., 141, 1 (2011). https://doi.org/10.1007/s10562-010-0495-9
  41. G. Centi and S. Perathoner, Catal. Today, 148, 191 (2009). https://doi.org/10.1016/j.cattod.2009.07.075