• Title/Summary/Keyword: 이송-분산 2차원 유한요소모형

Search Result 5, Processing Time 0.021 seconds

Development of 2-D Advection-Dispersion Model with Dispersion Tensor Considering Velocity Field (유속장을 고려한 분산텐서를 포함한 2차원 이송-분산모형의 개발)

  • Seo, Il Won;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.171-178
    • /
    • 2006
  • The finite element model based on the 2-D advection-dispersion equation incorporating the dispersion tensor that is calculated using velocity field data was developed in order to analyze more accurately 2-D mixing of pollutants for meandering streams. The proposed model was tested using the straight channel that inclined at 45o in the Cartesian coordinate system. The simulation results showed that dispersion tensor model using velocity field data gives an accurate solution. The suitability of the proposed model in analyzing actual pollutant mixing in meandering channels was demonstrated by comparing the simulation results with experimental data obtained from the tracer tests in the laboratory flume. Comparison results showed that the proposed model with dispersion tensor can represents more accurately the mixing phenomena of the pollutants in the meandering channels in which the direction of the primary flow is varying periodically along the channel.

Development and Verification of Horizontal 2-D Finite Element Model For Analysis of BOD and DO Transport (BOD와 DO 거동 해석을 위한 수평 2차원 유한요소모형의 개발 및 검증)

  • Seo, Il-Won;Choi, Hwang-Jeong;Song, Chang-Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.749-753
    • /
    • 2010
  • 본 논문에서는 하천에 유입되는 오염물질 중 대부분을 차지하는 비보존성 오염물질의 확산거동을 분석하기 위해 2차원 수심 평균된 이송분산방정식에 유한요소법을 적용하였다. 수치모형 구성을 위해 SUPG(Streamline-upwind Petrov-Galerkin)법을 이용한 가중잔차법을 사용하였다. 모의대상 수질인자는 BOD와 DO이며, BOD 농도 결과가 DO 농도 계산에서의 입력 자료로 이용되도록 상호 연계를 형성하였다. 모형의 검증을 위하여 직사각형 수로에 선원으로 연속주입하여 얻은 수치해와 해석해를 비교하였다. 비교결과 수치해와 해석해의 결과가 서로 일치하는 것을 볼 수 있었다.

  • PDF

Analysis of Non-conservative Pollutant Transport Using 2-D Stream Water Quality Model (2차원 하천수질모형을 이용한 비보존성 오염물질의 혼합거동 해석)

  • Seo, Il-Won;Song, Chang-Geun;Lee, Myung-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1741-1745
    • /
    • 2006
  • 본 연구에서는 하천에 유입되는 오염물질 중 대부분을 차지하는 비보존성 오염물질의 확산거동을 예측하기 위해 2차원 수심평균된 이송분산방정식에 유한요소모형을 적용하였다. 수치모형 구성을 위해 Galerkin법을 이용한 가중잔차법을 사용하였으며, 복잡한 하천경계를 보다 정확히 재현할 수 있도록 삼각 및 사각요소망의 혼용이 가능하도록 하였다. 모의대상 수질인자는 BOD, DO, 질소화합물, 인화합물, 수온, pH 및 대장균군수이며, 이 가운데 BOD와 DO는 상호 쌍을 이루는 방정식을 풀어야 하는 특수한 형태이므로 별도로 취급하였다. 순간주입 및 연속주입에 의한 비보존성 오염물질의 확산거동을 모의하였으며, 시간에 따른 민감도를 분석하기 위해 보존성 오염물질의 확산거동과 비교하였다. 해석해를 이용해 순간주입된 오염물질의 오염운을 구하는 식을 유도하고 해석해와 본 연구에서 개발한 수치모형에 의한 수치해를 비교하였다.

  • PDF

Estimation of Mass Error in the Simulation of Mixing of Instantaneously Released Pollutants (순간 유입된 오염물질의 혼합 모의 시 질량 오차 산정)

  • Lee, Myung Eun;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.475-483
    • /
    • 2008
  • 2D finite element model for analysis of transport of accidentally released pollutants in the flow was developed by SUPG method, and the mass balance of this model was checked though two example problems: line source and point source problem in the straight channel and unidirectional 2D flow field, respectively. All the test cases were simulated with both SUPG and conventional Galerkin method to compare the accuraccy of the numerical mass balance. Test results show that the model with SUPG can adequately conserve the released mass though simulation than the model using Galerkin method, so the developed model verified to be appropriate to solve this accidental mass release problem.

Horizontal 2-D Finite Element Model for Analysis of Mixing Transport of Heat Pollutant (열오염 혼합 거동 해석을 위한 수평 2차원 유한요소모형)

  • Seo, Il Won;Choi, Hwang Jeong;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.507-514
    • /
    • 2011
  • A numerical model has been developed by employing a finite element method to simulate the depth-averaged 2-D dispersion of the heat pollutant, which is an important pollutant material in natural streams. Among the finite element methods, the Streamline Upwind/Petrov Galerkin (SUPG) method was applied. Also both linear and quadratic elements can be applied so that irregular river boundaries can be easily represented. To show the movement of heat pollutants, the reaction term describing heat transfer was represented as an equation in which sink/source term is proportional to the difference between the equilibrium temperature and water surface temperature. The equation was expressed so that the water surface temperature changes according to the temperature transfer coefficient and the equilibrium temperature. For the calibration of the model developed, analytic and numerical results from a case of rectangular channel with full width continuous injection have been compared in a steady state. The comparisons showed that the numerical results were in good agreement with analytical solutions. The application site was selected from the downstream of Paldang dam to Jamsil submerged weir, and overall length of this site is about 22.5 km. The change of water temperature caused by the discharge from the Guri sewage treatment plant has been simulated, and results were similar to the observed data. Overall it is concluded that the developed model can represent the water temperature changes due to heat transport accurately. But the verification using observed data will further enhance the validity of the model.