망분리 네트워크에서 보안관제를 할 경우 내부망 또는 위험도가 높은 구간에서는 평시 이상징후 탐지가 거의 이루어지지 않는다. 그렇기 때문에 보안 네트워크 구축 후 최적화 된 보안구조를 완성하기 위해서 망분리된 내부방에서의 최신 사이버 위협 이상징후를 평가할 수 있는 모델이 필요하다. 본 연구에서 일반 네트워크와 망분리 네트워크에서 발생하는 사이버 취약점과 악성코드를 데이터셋으로 발생시켜 평가하여, 망분리 내부망 사이버 공격에 위협 분석 및 최신 사이버 취약점을 대비 할 수 있게 하고, 특성에 맞는 사이버 보안 테스트 평가 체계를 구축하였다. 이를 실제 망분리 기관에 적용 가능한 평가모델을 설계 하고, 테스트 망을 각 상황별로 구축하여 실시간 보안관제 평가 모델을 적용하였다.
본 논문은 일반적인 사람들의 일상 생활에서 발생하는 상태 변화(넘어짐)을 조금 더 빠르게 대처 하기 위해 제안하는 스마트 감시 카메라를 이용한다. 제안하는 알고리즘은 기존의 DOF 알고리즘이 가지는 빛의 영향 및 노이즈로 인한 문제점을 보완하고자 이미지 블록화 방식을 적용한다. 개선된 DOF 방식을 적용하는 스마트 감시 카메라는 안전 및 보안용으로 사람의 움직임 및 넘어짐을 체크하고 그 결과를 관리자에게 전송하여 좀 더 빠른 이상 징후 탐지와 대처에 도움을 줄 수 있다.
ActiveX가 법규제로 인해 없어지고 새로운 간편 절제 시스템이 출시되고 있다. 새롭게 도입되는 간편 결제 시스템의 경우 사용자가 한 번 내려 받으면 인터넷 익스플로러뿐만 아니라 사파리나 크롬 등 다른 브라우저를 사용 시 따로 보안프로그램을 내려 받지 않아도 된다고 한다. ActiveX대신 새로운 결제 시스템의 'exe'방식의 프로그램은 한 번 내려 받아 영구 사용할 수 있으며, 이러한 'exe' 프로그램은 인증우회가 가능하여 해커가 제3자의 금융정보를 가지게 된다면 간단한 우회를 통한 공격이 가능할 것으로 예측된다. 본 논문에서는 이러한 인증우회 공격에 관한 시나리오 및 'exe'프로그램 내부의 보안프로그램에서의 이상 징후 조기 탐지를 이용한 사전 예방기법을 제안한다.
Windows Event Log에는 시스템의 전반적인 동작들을 정의하고 있는 Log이며, 해당 파일에는 사용자의 여러 행위 및 이상 징후를 탐지할 수 있는 데이터가 저장되어 있다. 하지만 행위마다 Event Log가 발생함으로써, 로그들을 분석할 때, 상당한 시간이 소요된다. 따라서 본 연구에서는 NSA에서 발표한 "Spotting the Adversary with Windows Event Log Monitoring"의 주요 Event Log 목록을 바탕으로 XML 기반한 Event Log 분석 도구를 설계 및 구현 하였다.
화력발전소의 설비들은 매우 높은 온도와 압력의 환경에서 운전되므로, 설비고장은 상당한 인적 물적 손실로 이어진다. 그러므로 발전설비의 비정상정인 동작 상태를 사전에 확인할 수 있는 고장탐지 시스템이 필수적이다. 본 연구에서는, 화력발전소 증기보일러의 고장탐지를 위해서 마할라노비스 거리(Mahalanobis distance, MD)를 이용하였다. MD 기반의 고장탐지방법에서는, 비정상샘플은 정상샘플들로부터 멀리 떨어져 있다고 가정한다. 정상상태로 동작중인 대상시스템으로부터 수집된 다변량 샘플을 이용하여 평균벡터와 공분산행렬을 계산하고, MD값의 문턱값을 설정한다. 검증단계에서는, 평균벡터와 검증샘플들 간의 MD를 구한 후, 계산된 MD 값이 미리 설정된 문턱값보다 높으면 알람신호가 발생하게 된다. MD 기반의 고장탐지방법의 성능을 검증하기 위해서, 200MW 유연탄 화력발전소의 증기보일러 튜브누설로 인해서 발전정지 된 사례를 사용하였다. 실험결과는 MD 기반의 고장탐지기법이 발전정지가 발생하기 이전의 이상징후를 성공적으로 탐지할 수 있음을 보여준다.
반도체 성능 향상으로 신호를 전달하는 회로의 단위가 마이크로 미터에서 나노미터로 미세화되어 선폭(linewidth)이 점점 좁아지고 있다. 이러한 변화는 검출해야 할 불량의 크기가 작아지고, 정상 공정상태와 비정상 공정상태의 차이도 상대적으로 감소되어, 공정오차 및 공정조건의 허용범위가 축소되었음을 의미한다. 따라서 검출해야 할 이상징후 탐지가 더욱 어렵게 되어, 높은 정밀도와 해상도를 갖는 검사공정이 요구되고 있다. 이러한 이유로, 미세 공정변화를 파악할 수 있는 신규 검사 및 계측 공정이 추가되어 TAT(Turn-around Time)가 증가하게 되었고, 웨이퍼가 가공되어 완제품까지 도달하는데 필요한 공정시간이 증가하여 제조원가 상승의 원인으로 작용한다. 본 논문에서는 웨이퍼의 검계측 데이터가 아닌, 제조공정 과정에서 발생하는 다양한 센서 및 장비 데이터를 기반으로 웨이퍼 제조 결과가 양품인지 그렇지 않으면 불량인지 구별할 수 있는 가상계측 모델을 제안한다. 기계학습의 여러 알고리즘 중에서 다양한 장점을 갖는 XGBoost 알고리즘을 이용하여 예측모델을 구축하였고, 데이터 전처리(data-preprocessing), 주요변수 추출(feature selection), 모델 구축(model design), 모델 평가(model evaluation)의 순서로 연구를 수행하였다. 결과적으로 약 94% 이상의 정확성을 갖는 모형을 구축하는데 성공하였으나 더욱 높은 정확성을 확보하기 위해서는 반도체 공정과 관련된 Domain Knowledge 를 반영한 모델구축과 같은 추가적인 연구가 필요하다.
과학기술, 정보통신과 같은 기술들이 발전함에 따라 혁신적인 기술들 또한 대거 등장하였다. 이러한 기술들을 기반으로 새로운 서비스들이 등장하여 사람들의 삶의 질 또한 꾸준히 향상되고 있다. 그러나 기술발전 이면에는 해킹, 바이러스, 취약점 공격과 같은 역기능들의 기술 또한 지속해서 발전하고 있다. 공격자들은 이러한 기술들을 이용하여 정보자산의 침해, 사이버 테러, 금전적인 피해와 같은 사회 문제를 꾸준히 일으키고 있으며, 기업적으로는 개인정보 유출 및 산업 기밀 유출과 같은 정보보안 사고 또한 꾸준히 발생하고 있다. 이와 같은 이유로 SIEM(Security Information & Event Management)은 24시간 365일 네트워크와 시스템에 대한 지속적인 모니터링을 통해 외부로부터의 침입이나 각종 바이러스 등에 대해 적절한 대책을 통해 고객의 자산을 보호한다. 따라서 본 논문에서는 과거에서부터 현재까지의 내부 네트워크 기술의 발전을 살펴본 후 정보보안 사고 및 이상징후 탐지를 위한 통합 보안시스템 로그 관리 솔루션인 SIEM의 시대적 변화와 솔루션 동향에 대해 살펴 보고자 한다.
대량의 데이터 처리가 용이해지면서, 기업들은 사용자로부터 생성되는 데이터를 필요에 따라 분석함으로써 유용한 함의를 얻는데 활용하고 있다. 특히 게임에서는 게임 유저가 다양한 플레이를 하고 다른 게임 요소와 상호작용을 활발하게 함으로써 수많은 양의 사용자 기반 데이터가 발생하게 된다. 게임 관련 데이터는 유저의 이탈이나 게임 플레이 패턴, 게임 내 이상 징후 등을 예측할 수 있게 하는 등의 게임 환경 개선을 위한 자료로 활용되고 있다. 이에 따라 본 연구에서는 배틀그라운드 게임 데이터를 활용하여 게임 전략 분석 및 유저 행동 패턴을 파악하고, 게임 내 비정상적인 활동을 탐지하고자 하였다.
최근 빠르게 발전을 이룬 ICT (Information and Communications Technologies) 기술과 IoT (Internet of Things) 기술이 융합되어가고 있다. 그에 따라 ICT 환경에서 발생하였던 보안 위협들이 IoT 환경에서도 이어지고 있다. IoT의 사물로 간주되는 차량에 있어 보안 위협은 재산피해와 인명피해를 가져올 수 있다. 현재 차량 보안에 대한 대비는 미흡하고, 차량 자체에서 스스로 위협을 감지하고 대응하는 것에는 어려움이 존재하는 실정이다. 본 연구에서는 차량에서의 이상징후 탐지를 위한 의사결정 프레임워크를 제안하고, 이를 통해 IoT 관점에서 발생할 수 있는 차량 내 위협 요소들은 어떤 것이 있는지 알아보고자 한다. 차량을 대상으로 하는 공격에 대한 위협 요인과 위협 경로, 공격 형태 등을 인지하는 것은 자가 점검 기술과 디바이스 제어 공격에 대한 신속한 대처에 앞서 차량 보안 이슈를 해결하기 위한 전제가 될 것이다.
본 논문은 기업 내 생성형 AI(Generative Artificial Intelligence) 시스템의 보안 위협과 대응 방안을 제시한다. AI 시스템이 방대한 데이터를 다루면서 기업의 핵심 경쟁력을 확보하는 한편, AI 시스템을 표적으로 하는 보안 위협에 대비해야 한다. AI 보안 위협은 기존 사람을 타겟으로 하는 사이버 보안 위협과 차별화된 특징을 가지므로, AI에 특화된 대응 체계 구축이 시급하다. 본 연구는 AI 시스템 보안의 중요성과 주요 위협 요인을 분석하고, 기술적/관리적 대응 방안을 제시한다. 먼저 AI 시스템이 구동되는 IT 인프라 보안을 강화하고, AI 모델 자체의 견고성을 높이기 위해 적대적 학습 (adversarial learning), 모델 경량화(model quantization) 등 방어 기술을 활용할 것을 제안한다. 아울러 내부자 위협을 감지하기 위해, AI 질의응답 과정에서 발생하는 이상 징후를 탐지할 수 있는 AI 보안 체계 설계 방안을 제시한다. 또한 사이버 킬 체인 개념을 도입하여 AI 모델 유출을 방지하기 위한 변경 통제와 감사 체계 확립을 강조한다. AI 기술이 빠르게 발전하는 만큼 AI 모델 및 데이터 보안, 내부 위협 탐지, 전문 인력 육성 등에 역량을 집중함으로써 기업은 안전하고 신뢰할 수 있는 AI 활용을 통해 디지털 경쟁력을 제고할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.