DOI QR코드

DOI QR Code

Fault Detection Method for Steam Boiler Tube Using Mahalanobis Distance

마할라노비스 거리를 이용한 증기보일러 튜브의 고장탐지방법

  • Yu, Jungwon (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Jang, Jaeyel (Korea East-West Power Co., Ltd.) ;
  • Yoo, Jaeyeong (XEONET Co., Ltd.) ;
  • Kim, Sungshin (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2016.05.09
  • Accepted : 2016.06.16
  • Published : 2016.06.25

Abstract

Since thermal power plant (TPP) equipment is operated under very high pressure and temperature, failures of the equipment give rise to severe losses of life and property. To prevent the losses, fault detection method is, therefore, absolutely necessary to identify abnormal operating conditions of the equipment in advance. In this paper, we present Mahalanobis distance (MD) based fault detection method for steam boiler tube in TPP. In the MD-based method, it is supposed that abnormal data samples are far away from normal samples. Using multivariate samples collected from normal target system, mean vector and covariance matrix are calculated and threshold value of MD is decided. In a test phase, after calculating the MDs between the mean vector and test samples, alarm signals occur if the MDs exceed the predefined threshold. To demonstrate the performance, a failure case due to boiler tube leakage in 200MW TPP is employed. The experimental results show that the presented method can perform early detection of boiler tube leakage successfully.

화력발전소의 설비들은 매우 높은 온도와 압력의 환경에서 운전되므로, 설비고장은 상당한 인적 물적 손실로 이어진다. 그러므로 발전설비의 비정상정인 동작 상태를 사전에 확인할 수 있는 고장탐지 시스템이 필수적이다. 본 연구에서는, 화력발전소 증기보일러의 고장탐지를 위해서 마할라노비스 거리(Mahalanobis distance, MD)를 이용하였다. MD 기반의 고장탐지방법에서는, 비정상샘플은 정상샘플들로부터 멀리 떨어져 있다고 가정한다. 정상상태로 동작중인 대상시스템으로부터 수집된 다변량 샘플을 이용하여 평균벡터와 공분산행렬을 계산하고, MD값의 문턱값을 설정한다. 검증단계에서는, 평균벡터와 검증샘플들 간의 MD를 구한 후, 계산된 MD 값이 미리 설정된 문턱값보다 높으면 알람신호가 발생하게 된다. MD 기반의 고장탐지방법의 성능을 검증하기 위해서, 200MW 유연탄 화력발전소의 증기보일러 튜브누설로 인해서 발전정지 된 사례를 사용하였다. 실험결과는 MD 기반의 고장탐지기법이 발전정지가 발생하기 이전의 이상징후를 성공적으로 탐지할 수 있음을 보여준다.

Keywords

References

  1. K. Y. Chen, L. S. Chen, M. C. Chen and C. L. Lee, “Using SVM based method for equipment fault detection in a thermal power plant,” Comput. in Ind., Vol. 62, No. 1, pp. 42-50, Jan. 2011. https://doi.org/10.1016/j.compind.2010.05.013
  2. F. Li, B. R. Upadhyaya and L. A. Coffey, "Model-based monitoring and fault diagnosis of fossil power plant process units using group method of data handling," ISA Trans., vol. 48, No. 2, pp. 213-219, Apr. 2009. https://doi.org/10.1016/j.isatra.2008.10.014
  3. Y. G. Kim and H. J. Choi, “Design of Intelligent State Diagnosis System for TMS Using Neuro-Fuzzy,” Journal of the Korean Institute of Intelligent Systems, Vol. 11, No. 8, pp. 695-700, Dec. 2001.
  4. Y. H. Cho, S. W. Ryu and K. G. Ahn, “A System Development for Remotely Controlling Windows and Doors in Mobile Environment,” Journal of the Korean Institute of Intelligent Systems, Vol. 25, No. 4, pp. 334-341, Aug. 2015. https://doi.org/10.5391/JKIIS.2015.25.4.334
  5. S. W. Kwak and J. M. Yang,"Fault Diagnosis and Tolerance for Asynchronous Counters with Critical Races Caused by Total Ionizing Dose in Space," Journal of the Korean Institute of Intelligent Systems, Vol. 22, No. 1, pp. 49-55, Feb. 2012. https://doi.org/10.5391/JKIIS.2012.22.1.49
  6. S. H. Yoo, “A Fault Detection System Design for Boiler-Turbine Control System of Thermal Power Pant,” Journal of the Korean Institute of Intelligent Systems, Vol. 25, No. 6, pp. 615-620, Dec. 2015. https://doi.org/10.5391/JKIIS.2015.25.6.615
  7. X. Wang, L. Ma and T. Wang, "An optimized nearest prototype classifier for power plant fault diagnosis using hybrid particle swarm optimization algorithm," Int. J. of Elect. Power & Energy Syst., Vol. 58, pp. 257-265, Jun. 2014. https://doi.org/10.1016/j.ijepes.2014.01.016
  8. K. Rostek, Ł. Morytko and A. Jankowska, "Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks," Energy, Vol. 89, pp. 914-923, Sep. 2015. https://doi.org/10.1016/j.energy.2015.06.042
  9. F. Di Maio, P. Baraldi and E. Zio, “Fault detection in nuclear power plants components by a combination of statistical methods,” IEEE Trans. Reliab., Vol. 62, No. 4, pp. 833-845, Oct. 2013. https://doi.org/10.1109/TR.2013.2285033
  10. M. Fasta and T. Palme, “Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant,” Energy, Vol. 35, No. 2, pp. 1114-1120, Feb. 2010. https://doi.org/10.1016/j.energy.2009.06.005
  11. Korea Power Exchange, "Statistics of power plants' unscheduled shutdowns," Available: http://www.kpx.or.kr/www/selectBbsNttList.do?key=21&bbsNo=152, March 11, 2016, [Accessed: May 3, 2016]
  12. D. T. Larose, Discovering knowledge in data: an introduction to data mining, John Wiley & Sons, 2005.
  13. J. Han, M. Kamber and J. Pei, Data mining: concepts and techniques, Elsevier, 2011.
  14. D. Flynn, Thermal power plant simulation and control, IET, 2003.
  15. A. K. Raja, Power plant engineering, New Age Int., 2006.
  16. D. Sarkar, Thermal power plant design and operation, Elsevier, 2015.
  17. J. E. Oakey, Power plant life management and performance improvement, Elsevier, 2011.

Cited by

  1. Anomaly detection of tripod shafts using modified Mahalanobis distance vol.32, pp.6, 2018, https://doi.org/10.1007/s12206-018-0504-2