Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.498-500
/
2022
공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.661-664
/
2022
양돈을 관리하는 데에 있어 비정상 개체를 식별하고 사전에 추적하거나 격리할 수 있는 양돈업 시스템을 구축하는 것은 효율적인 돈사관리를 위한 필수 요소이다. 그러나 돈사내의 이상 상황을 탐지하는 연구는 보고되었지만, 이상 상황이 발생한 돼지를 특정하여 식별하는 연구는 찾아보기 힘들다. 따라서, 본 연구에서는 소리를 활용하여 이상 상황이 발생함을 탐지한 후 영상을 활용하여 소리를 낸 특정 돼지를 식별할 수 있는 시스템을 제안한다. 해당 시스템의 주요 알고리즘은 활성 화자 탐지 문제에서 착안하여 이를 돈사에 맞게 적용하여, 비정상 소리를 내는 활성 돼지를 식별 가능하도록 구현하였다. 제안한 방법론은 모의 실험을 통해 돈사 내의 이상 상황이 발생한 돼지를 식별할 수 있음을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.691-694
/
2023
본 논문은 CCTV 화면에서의 다양한 이상상황 중 교량 데이터에 특화된 자세 추정 기반 이상탐지 알고리즘을 소개한다. 교량은 크게 도로, 인도 이렇게 두 구역으로 나눠지며, 사람들의 이동방향이 한정적이라는 특징을 가지는 장소 중 하나이다. 이러한 장소적 특징을 이용하고자 사람 자세 추정을 통해 이상의 기준을 잡고 교량 데이터에 특화된 이상탐지 알고리즘을 제안한다. CCTV 영상은 이상을 정하기 어렵고 이상에 대한 레이블이 없는 데이터가 대부분이며 이상에 대한 레이블 생성시 많은 비용 발생이 필수적이다. 본 연구에서는 이러한 한계점을 극복하고자 영상 데이터를 이미지 단위가 아닌 영상 단위로 레이블이 담긴 weakly label 을 가지는 데이터를 활용한 이상탐지 모델을 이용하였다. 특히, 교량에서의 이상상황의 특징인 사람 자세 추정으로 추출한 특질을 추가하여 기존 알고리즘의 이상탐지 예측 성능을 개선하였다.
Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.1139-1142
/
2008
인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.394-397
/
2019
센서 및 정보 통신 기술의 발전은 산업 현장에서 취득한 정보를 기반으로 다양한 연구를 수행할 수 있는 토대가 되었다. 본 연구에서는 철도의 진로 방향을 전환하는 선로 전환기 주변에 설치한 소리 센서에서 수집한 소리를 기반으로 선로 전환기의 이상 상황을 탐지하고자 한다. 이와 같은 소리 데이터 기반의 이상 상황 탐지 시스템을 실제 산업 현장에서 성공적으로 운용되기 위해서는 소리 취득 시 발생하는 다양한 잡음 환경에서도 이상 상황을 식별할 수 있는 강인함이 보장되어야 한다. 본 논문에서는 소리 음질을 향상시키기 위하여 SEGAN(Speech Enhancement Generative Adversarial Network)을 활용하며, CNN(Convolutional Neural Network)을 기반으로 선로 전환기의 이상 상황을 식별하는 시스템을 제안한다. 수집된 소리 데이터를 기반으로 제안한 시스템을 실험적으로 검증한 바 잡음에 강인한 성능을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.595-596
/
2016
열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.
리튬이온 배터리를 고온의 환경에서 장시간 운용함에 따라 배터리 내부 물질의 변형 및 특성 변화가 발생하여 안전성의 문제가 발생하게 된다. 배터리의 안전성을 향상하기 위해 배터리의 고장 및 이상 상태를 진단 및 탐지하는 기법들의 연구가 진행되고 있다. 본 논문에서는 배터리의 이상 상황을 모사하기 위해 열폭주의 한 가지 방법인 고온의 환경에서 배터리의 특성 변화를 전기화학적 임피던스 분광법을 통해 분석하였으며, 등가회로 모델의 특성 인자를 활용하여 이상 상황을 탐지할 수 있는 이동 평균 추세선 기반의 이상 탐지 기법을 제안하며, 열폭주가 발생한 데이터를 통해 이상 탐지 기법을 검증한다.
This paper Various services exist to detect and monitor abnormal event. However, most services focus on fires and gas leaks. so It is impossible to prevent and respond to emergency situations for the elderly and severely disabled people living alone. In this study, AI model is designed and compared to detect abnormal event of heart rate signal which is considered to be the most important among various bio signals. Specifically, electrocardiogram (ECG) data is collected using Physionet's MIT-BIH Arrhythmia Database, an open medical data. The collected data is transformed in different ways. We then compare the trained AI model with the modified and ECG data.
Journal of the Korea Society of Computer and Information
/
v.27
no.6
/
pp.23-31
/
2022
Due to the recent outbreak of COVID-19 and an aging population and an increase in single-person households, the amount of time that household members spend doing various activities at home has increased significantly. In this study, we propose an algorithm for detecting anomalies in members of single-person households, including the elderly, based on the results of human movement and fall detection using an image sensor algorithm through home CCTV, an activity sensor algorithm using an acceleration sensor built into a smartphone, and a 2D LiDAR sensor-based LiDAR sensor algorithm. However, each single sensor-based algorithm has a disadvantage in that it is difficult to detect anomalies in a specific situation due to the limitations of the sensor. Accordingly, rather than using only a single sensor-based algorithm, we developed a fusion method that combines each algorithm to detect anomalies in various situations. We evaluated the performance of algorithms through the data collected by each sensor, and show that even in situations where only one algorithm cannot be used to detect accurate anomaly event through certain scenarios we can complement each other to efficiently detect accurate anomaly event.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.