모바일 클라우드 서비스는 사용자가 모바일 단말에 자원을 가지고 있지 않더라도 인터넷을 통해 외부의 다양한 IT 자원을 제공하는 서비스로서 모바일 단말이 가지는 성능적 한계를 극복시킬 수 있다는 장점과 함께 이용자 수가 증가하고 있다. 그러나 클라우드 컴퓨팅 환경에 존재하는 개인 및 기업의 정보 유출과 같은 문제들은 모바일 클라우드 컴퓨팅 환경에도 그대로 상속되기 때문에 이러한 문제에 대응하기 위해서는 모바일 클라우드 컴퓨팅 환경에서 정보유출을 탐지할 수 있는 이상행위 탐지 알고리즘이 마련되어야 한다. 여기서 이상행위란, 모바일 클라우드 자원에 접근하는 방법에 있어 기존에 인지하고 있던 정상적인 행위에서 벗어나는 행위를 의미하며 이상행위로 판단되는 상황이 발생되는 경우, 이를 정보유출이 발생할 수 있는 상황으로 인지함으로써 적절한 대응을 할 수 있게 된다. 따라서 본 논문에서는 모바일 클라우드 자원의 정보유출을 방지하기 위한 목적으로 자원 접근에 대한 이상행위 탐지 알고리즘 개발 모델을 제시한다. 이상행위 탐지 알고리즘을 개발하고 이를 검증하기 위해서는 이상행위를 일으키는 공격 모델 및 대응 모델이 개발되어야 한다. 따라서 본 논문에서는 인증 및 권한관리의 취약점을 이용하여 위협을 일으키는 공격 모델을 개발하는 방법을 제시하고, 사용자의 접속환경 및 클라우드 자원의 정보 흐름을 분석함으로써 이상행위를 탐지하는 알고리즘을 제시한다.
최근 핀테크 산업이 이슈가 되면서 금융 업무를 더 효율적으로 만드는 기술 중 하나로서 이상행위 탐지시스템(FDS)이 관심을 받고 있다. 이상행위 탐지시스템은 금융업무의 리스크 관리를 위한 기술로 주로 활용되고 있다. 본고에서는 이상행위 탐지시스템의 개념을 소개하고, 은행, 카드, 보험 등 금융권 적용분야를 살펴보고자 한다. 또한, 각 금융업무의 리스크 관리 목적뿐만 아니라 FDS를 활용한 침해사고 대응 활동을 소개하면서 기술 발전 방향을 고찰하도록 한다.
최근 5G 네트워크의 발전으로 사물인터넷의 활용도가 커지며 시장이 급격히 확대되고 있다. 사물인터넷 기기가 급증하면서 이를 대상으로 하는 위협이 크게 늘며 사물인터넷 기기의 보안이 중요시 되고 있다. 그러나 이러한 사물인터넷 기기는 기존의 ICT 장비와는 다르게 리소스가 제한되어 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안기술로 네트워크 학습을 통해 사물인터넷 기기의 이상행위를 탐지하는 경량화된 인공신경망 기술을 제안한다. 기기 별 혹은 사용자 별 네트워크 행위 패턴을 분석하여 특성 연구를 진행하였으며, 사물인터넷 기기의 정상행위를 수집하고 학습데이터로 활용한다. 이러한 학습데이터를 통해 인공신경망 기반의 오토인코더 알고리즘을 활용하여 이상행위 탐지 모델을 구축하였으며, 파라미터 튜닝을 통해 모델 사이즈, 학습 시간, 복잡도 등을 경량화 하였다. 본 논문에서 제안하는 탐지 모델은 신경망 프루닝 및 양자화를 통해 경량화된 오토인코더 기반 인공신경망을 학습하였으며, 정상 행위 패턴을 벗어나는 이상행위를 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련 연구를 통하여 머신러닝 기술과 이상 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 이상행위 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.
본 연구는 간호사 493명을 대상으로 내현적 자기애, 외모에 대한 사회문화적 태도가 직무스트레스, 사회부과적 완벽주의, 섭식절제를 통해 이상섭식행위에 미치는 영향에 대한 구조모형을 검정하고자 시도되었다. 연구결과 첫째, 이상섭식행위에 영향을 미치는 변수들의 직접효과는 섭식절제가 가장 큰 요인이었고, 그 다음 사회부과적 완벽주의 순이었으며 이들 변인은 이상섭식행위를 85% 설명하였다. 둘째, 내현적 자기애는 사회부과적 완벽주의와 섭식절제를 통해 이상섭식행위에 유의한 영향을 미쳤고, 외모에 대한 사회문화적 태도는 섭석절제를 통해 이상섭식행위에 유의한 영향을 미쳤다. 병원 간호사와 보건소 간호사 집단을 조절변수로 하는 다중집단 조절효과에서 직무스트레스와 이상섭식행위와 의 경로계수, 사회부과적 완벽주의와 이상섭식행위와이 경로계수가 집단간 차이가 있어 부분조절효과가 있었다. 따라서 이상섭식행위를 감소시키기 위해서는 과도한 섭식절제에서 벗어날 수 있는 간호중재와 사회부과적 완벽주의를 낮출 수 있는 방안모색이 필요하다.
인터넷이 일반화되면서, 컴퓨터 시스템을 침입으로부터 효과적이면서 종합적으로 보호하기 위해 침입탐지 시스템이 필요하게 되었다. 본 연구에서는 이상행위 탐지를 기반으로 한 침입 탐지 시스템을 위한, 정상행위 프로파일링 기준을 제시한다. 프로파일링 과정에서 내재하고 있는 과탐지의 원인을 제시하고 이를 제어할 수 있는 침입 탐지 방안을 제안한다. 마지막으로, 사용자의 행위 패턴에 대해 정상행위 패턴 데이터베이스로부터 이상행위 여부를 판단할 수 있는 유사도 함수를 제안한다.
인터넷이 일반화되면서, 컴퓨터 시스템을 침입으로부터 효과적이면서 종합적으로 보호하기 위해 침입 탐지 시스템이 필요하게 되었다. 본 연구에서는 이상행위 탐지 기법을 이용한 침입 탐지 시스템을 구축할 때, 수행하는 정상행위 프로파일링 과정에서 발생하는 자기설명모순이 존재함을 제시하고 이를 제어할 수 있는 침입 탐지 방안을 제안하였다. 또한, 연관규칙을 적용한 프로파일링 과정의 결과는, 많은 정상행위 패턴이 생성될 수 있기 때문에, 이를 위해 군집화를 통한 효과적인 적용방안을 제시한다. 마지막으로, 사용자의 행위 패턴에 대해 군집화된 정상행위 패턴 데이터베이스로부터 이상행위 여부를 판단할 수 있는 유사도 함수를 제안하였다.
프로그램 행위 침입 탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로파일을 구축하여 침입을 효과적으로 탐지한다 시스템 호출을 이용한 이상 탐지는 단지 그 프로세스가 이상(anomaly)임을 탐지할 뿐 그 프로세스에 의해 영향을 받는 여러 부분에 대해서는 탐지하지 못하는 문제점을 갖는다. 이러한 문제점을 개선하는 방법이 베이지안 확률값 이용하여 여러 프로세스의 시스템 호출간의 관계를 표현하고, 베이지안 네트워크를 이용한 어플리케이션의 행위 프로파일링에 의해 이상 탐지 정보를 제공한다. 본 논문은 여러 침입 탐지 모델들의 문제점들을 극복하면서 이상 침입 탐지를 효율적으로 수행할 수 있는 베이지안 네트워크를 이용한 침입 탐지 방법을 제안한다 행위의 전후 관계를 이용한 정상 행위를 간결하게 프로파일링하며, 변형되거나 새로운 행위에 대해서도 탐지가 가능하다. 제안한 정상행위 프로파일링 기법을 UNM 데이터를 이용하여 시뮬레이션하였다.
본 논문에서는 지능형 감시 시스템을 위한 3가지 이상행위 검출 방법을 제안한다. 단순히 직접 감시나 센서에 의존한 문제점 검출이 아닌 비전 기반 기술을 적용하여 특정지역 및 모든 감시구역에 대하여 객체의 이상 행동을 감지하는 방법들을 소개한다. 제안하는 이상행위의 분류는 배회, 도주, 특정 감시 지역 침입 3가지로 정의한다. 휘도 기반의 평균 배경 모델링 방법을 통하여 움직임 물체를 검출하고, 검출된 객체를 분석(위치, 크기, 방향, 속도) 및 정의한다. 이때 이상행위의 판단에 따라 정의된 시나리오 환경으로 구성하고 분석하였다. 제안하는 방법은 실험에 사용된 3가지 이상행위에 대해 1초 안에 검출되는 것을 보였다.
첨단 기술이 나날히 발잔하면서 매년 내부자에 의한 기밀 유출 또한 증가함에 따라 기업에 피해가 발생하고 있다. 기업기밀이 유출될 경우 기업 입장에 막대한 손실을 미칠 수 있으며, 핵심 기술 유출은 해마다 지속적으로 증가하는 추세이다. 본 논문은 기존 기계학습을 이용한 내부자 이상행위 탐지 시스템에 컨소시움 블록체인을 이용하여 꾸준한 기록 관리를 통해 내부자의 이상행위를 탐지하는 솔루션을 제안하여 내부자 유출을 방지하고자 한다.
최근 많은 기업 및 기관에서 내부정보가 유출되는 사고가 지속적으로 발생하고 있으며, 이러한 내부정보 유출사고는 대부분 권한 있는 내부자에 의해 발행하고 있다. 본 논문에서는 은닉 마르코프 모델(HMM)을 이용하여 내부자의 정상행위에서 생성된 정보를 모델링한 후 내부자들의 비정상행위를 탐지하는 내부정보 유출 탐지 기법에 대해 제안한다. 보안시스템들의 로그를 통해 내부자들의 행위에 대한 특징을 추출하여 입력 시퀀스를 생성하고, HMM 모델에 학습하여 정상행위에 대한 모델을 생성한다. 이상행위에 대한 판정은 사용자 행위에 대한 관측열을 정상행위 모델에 적용하여 확률값을 계산하고, 이 값을 특정 임계값과 비교하여 이상행위를 탐지한다. 실험을 통해 내부자 정보유출 행위를 탐지하기 위한 최적의 HMM 매개변수를 결정하였고, 실험결과 제안한 시스템이 내부자 정보유출 행위에 대해 20%의 오탐율과 80%의 탐지율을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.