This paper presents the outlier detection algorithm in the estimation method of a source location and velocity based on two-step weighted least-squares method using time difference of arrival(TDOA) and frequency difference of arrival(FDOA) data. Since the accuracy of the estimated location and velocity of a moving source can be reduced by the outliers of TDOA and FDOA data, it is important to detect and remove the outliers. In this paper, the method to find the minimum inlier data and the method to determine whether TDOA and FDOA data are included in inliers or outliers are presented. The results of numerical simulations show that the accuracy of the estimated location and velocity is improved by removing the outliers of TDOA and FDOA data.
Journal of the Korea institute for structural maintenance and inspection
/
v.19
no.2
/
pp.92-98
/
2015
Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring (SHM) technique is increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and influenced by various external loads. "Abnormal behavior point" is a moment when the structure starts vibrating abnormally and this can be detected by comparing between before and after abnormal behavior point. In other words, anomalous behavior is a sign of damage on structures and estimating the abnormal behavior point can be directly related to the safety of structure. Abnormal behavior causes damage on structures and this leads to enormous economic damage as well as damage for humans. This study proposes an estimating technique to find abnormal behavior point using Hilber-Huang Transform which is a time-frequency signal analysis technique and the proposed algorithm has been examined through laboratory tests with a bridge model using a shaking table.
Journal of the Korean Data and Information Science Society
/
v.21
no.5
/
pp.841-852
/
2010
An integrated process control (IPC) procedure is a scheme which simultaneously applies the engineering control procedure (EPC) and statistical control procedure (SPC) techniques to reduce the variation of a process. In the IPC procedure, the observed deviations are monitored during the process where adjustments are repeatedly done by its controller. Because the effects of the noise, the special cause, and the adjustment are mixed, the use and properties of the SPC procedure for the out-of-control process are complicated. This paper considers efficiency of EWMA charts for detecting special causes in an ARMA(1,1) noise model with a minimum mean squared error adjustment policy. And we propose the readjustment procedure after having a true signal. This procedure can be considered when the elimination of the special cause is not practically possible.
Kim, Soo-Jin;Rim, Kyung-Taek;Cho, Hae-Won;Han, Jeong-Hee;Kim, Hyeon-Yeong;Yang, Jeong-Sun
Environmental Analysis Health and Toxicology
/
v.24
no.1
/
pp.43-52
/
2009
Fullerene의 유전독성을 평가하기 위하여 Chinese hamster유래의 난소유아세포(CHO-K1 cell)를 이용하여 직접법(-S9)과 대사활성화법(+S9 mix)의 염색체이상시험을 실시하였다. 시험물질은 1% CMC 나트륨염의 현탁액(1% CMC 용액)에 희석하여 조제하였다. 대사활성화를 시키지 않은 직접법의 염색체이상시험에서 24시간 투여군은 8단계의 농도(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 mM)로 투여하여 실시하였다. 투여 농도 증가에 따른 염색체이상의 빈도가 증가하는 양상이 나타나지 않았다. 48시간의 투여군에서는 8단계의 농도(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 mM)로 투여하여 실시하였는데 투여 농도 증가에 따른 염색체이상의 빈도가 증가하는 양상이 나타나지 않았다. 배수체의 염색체이상은 직접법에서 관찰되지 않았다. 대사활성화법을 이용하여 6시간 시험물질을 투여한 시험에 있어서는 8단계의 용량단계(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10mM)를 설정하였는데 투여 농도가 증가함에 따른 염색체이상빈도의 증가양상이 관찰되지 않았다. 이상의 결과를 종합할 때 본 시험물질은 본 시험 조건하에서 CHO-K1세포에서 대사활성화를 시켰을 때 염색체이상을 유발하지 않는 것으로 판단된다.
In this study, detection methods of outlier in various monitoring data that fit into big data category were developed and outlier detections were conducted for both artificial data and real field monitoring data. Rule-based methods applied rate of change and probability of error for monitoring data are effective to detect a large-scale short faults and constant faults having no change within a certain period. There are however, problems with misjudgement that consider the normal data with a large scale variation as outlier caused by using independent single dataset. Rule-based methods for noise faults detection have a limit to application of real monitoring data due to the problem with a choice of proper window size of data and finding of threshold for outlier judgment. A correlation analysis among different two datasets were very effective to detect localized outlier and abnormal variation for short and long-term monitoring dataset if reasonable range of training data could be selected.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.3
/
pp.615-625
/
2015
This paper proposes new methods and examples for improving fraud detection rules based on banking customer's transaction behaviors focused on anomaly detection method. This study investigates real example that FDS(Fraud Detection System) regards fraudulent transaction as legitimate transaction and figures out fraudulent types and transaction patterns. To understanding the cases that FDS regard legitimate transaction as fraudulent transaction, it investigates all transactions that requied additional authentications or outbound call. We infered additional facts to refine detection rules in progress of outbound calling and applied to existing detection rules to improve. The main results of this study is the following: (a) Type I error is decreased (b) Type II errors are also decreased. The major contribution of this paper is the improvement of effectiveness in detecting fraudulent transaction using transaction behaviors and providing a continuous method that elevate fraud detection rules.
Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.
Journal of the Korean Data and Information Science Society
/
v.23
no.4
/
pp.657-663
/
2012
There are very small values and/or very big values which get out of the normal range for survey data in various fields. The reasons of occurrence for outlier are two. One of them is the error in process of data input and the other is the strange response of the respondent. If the data has outliers, then the summary statistics such as the mean and the variance produce misleading information. Therefore, researcher should be careful in detecting the outlier in data. In particular, it is very important problem for clinical fields because the cost of experiment is very high. This article introduce the Grubb test and Cochran test to detect outliers in the data and we apply this method for clinical data.
A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.
A treatment of outlier has been discussed. Outliers disrupt the reliability of information systems and they should be eliminated prior to the information and/or data fusion. A time series-based elimination algorithm were proposed and prediction interval, as a criterion of acceptable value width, was obtained with the model. Ten actual link values were used and the best model was identified as IMA(1,1). Although the actual verification was difficult in a sense that the matching process between the eliminated data and model data was not readily available, the proposed model can be successfully used in practice with some calibration efforts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.