In vitro Mammalian Chromosomal Aberration Test of Fullerene-C60

Fullerene-C60의 포유류 배양세포를 이용한 염색체이상시험

  • Kim, Soo-Jin (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Rim, Kyung-Taek (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Cho, Hae-Won (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Han, Jeong-Hee (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Kim, Hyeon-Yeong (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Yang, Jeong-Sun (Laboratory of Occupational Toxicology, Chemical Safety & Health Research Center, Occupational Safety & Health Research Institute, KOSHA)
  • 김수진 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터) ;
  • 임경택 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터) ;
  • 조해원 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터) ;
  • 한정희 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터) ;
  • 김현영 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터) ;
  • 양정선 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터)
  • Published : 2009.03.31

Abstract

Fullerene의 유전독성을 평가하기 위하여 Chinese hamster유래의 난소유아세포(CHO-K1 cell)를 이용하여 직접법(-S9)과 대사활성화법(+S9 mix)의 염색체이상시험을 실시하였다. 시험물질은 1% CMC 나트륨염의 현탁액(1% CMC 용액)에 희석하여 조제하였다. 대사활성화를 시키지 않은 직접법의 염색체이상시험에서 24시간 투여군은 8단계의 농도(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 mM)로 투여하여 실시하였다. 투여 농도 증가에 따른 염색체이상의 빈도가 증가하는 양상이 나타나지 않았다. 48시간의 투여군에서는 8단계의 농도(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 mM)로 투여하여 실시하였는데 투여 농도 증가에 따른 염색체이상의 빈도가 증가하는 양상이 나타나지 않았다. 배수체의 염색체이상은 직접법에서 관찰되지 않았다. 대사활성화법을 이용하여 6시간 시험물질을 투여한 시험에 있어서는 8단계의 용량단계(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10mM)를 설정하였는데 투여 농도가 증가함에 따른 염색체이상빈도의 증가양상이 관찰되지 않았다. 이상의 결과를 종합할 때 본 시험물질은 본 시험 조건하에서 CHO-K1세포에서 대사활성화를 시켰을 때 염색체이상을 유발하지 않는 것으로 판단된다.

Keywords

References

  1. Collins AR, Duthie SJ and Dobson VL. Direct enzymatic detection of endogenous oxidative base damage in human lymphocyte DNA, Carcinogenesis 1993; 14: 1733-1735 https://doi.org/10.1093/carcin/14.9.1733
  2. Covallo O, Ursini CL, Setini A, Chianese C and Piegari P. Evaluation of oxidative damage and inhibition of DNA repair in an in vitro study of nickel exposure, Toxicology in vitro 2003; 17: 603-607 https://doi.org/10.1016/S0887-2333(03)00138-3
  3. Geiser M. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environmental Health Perspectives 2005; 113(11): 1555-1560 https://doi.org/10.1289/ehp.8006
  4. Hoet Peter HM. Nanoparticles-known and unknown health risks, Journal of Nanobiotechnology 2004; 2: 12 https://doi.org/10.1186/1477-3155-2-12
  5. Holsapple MP. Research strategies for safety evaluation of nanomaterials, Part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs, Toxicological Sciences 2005; 88(1): 12-17 https://doi.org/10.1093/toxsci/kfi293
  6. Ishidate M Jr. and Sofuni T. The in vitro chromosomal aberration test using chinese hamster lung (CHL) fibroblast cells in culture. In: Progress in Mutation Research, Elsevier Science Publishers, Amsterdam-New York-Oxford 1985; 5: 427-432
  7. Iwata N, Mukai T, Yamakoshi TN, Hara S and Yanase T. Effects of C60, a fullerene, on the activities of glutathione s-transferase and glutathione-related enzymes in rodent and human livers, Fullerene Science and Technology 1998; 6(2): 213-226 https://doi.org/10.1080/10641229809350196
  8. Jekinson AM, Collins AR, Duthie SJ, Wahle KWJ and Duthie GG. The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes, FASEB J 1999; 13: 2138-2142
  9. Kamat JP, Debasagayam TP, Priyadarsini KI, Mohan H and Mittal JP. Oxidative damage induced by the fullerenes C60 on photosensitization in rat liver microscomes, Chem Biol Interact 1998; 114: 145-159 https://doi.org/10.1016/S0009-2797(98)00047-7
  10. Kroto HW, Heath JR, O'Brien SC, Curl RF and RE Smalley RE. $C^{60}$: Buckminsterfullerene, Nature 1985; 318: 162-163 https://doi.org/10.1038/318162a0
  11. Li N. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environmental Health Perspectives 2003; 111(4): 455-460 https://doi.org/10.1289/ehp.6000
  12. Magrez A. Cellular toxicity of carbon-based nanomaterials, Nano Letters. 2006; 6(6): 1121-1125 https://doi.org/10.1021/nl060162e
  13. Moussa F, Pressac M, Genin E, Roux S and Trivin F. Quantitative analysis of C60 fullerene in blood and tissues by high-performance liquid chromatography with photodiode-array and mass spectrometric detection, J Chromatogr B Biomed Sci 1997; Appl 696(1): 153-159 https://doi.org/10.1016/S0378-4347(97)00228-4
  14. Nel A. Toxic potential of materials at the nanolevel, Science 2006; 311(5761): 622-627 https://doi.org/10.1126/science.1114397
  15. Nelson MA, Domann FE, Bowden GT, Hooser SB and Fernando Q. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin, Toxicol Ind Health 1993; 9(4): 623-630 https://doi.org/10.1177/074823379300900405
  16. Oberdorster G. Principles for characterizing the potential human health effects from exposure to nanomaterials : elements of a screening strategy, Particle and Fibre Toxicology 2005; 2: 8 https://doi.org/10.1186/1743-8977-2-8
  17. Oberdorster G, Oberdörster E and Oberdörster J. Nantoxicology : An emerging discipline evolving from studies of ultrafine particles, Environmental Health Perspectives 2005; 113(7): 823-839 https://doi.org/10.1289/ehp.7339
  18. Organisation for economic co-operation and development (OECD) In vitro mammalian chromosome aberration test, Guideline For The Testing Of Chemicals TG473. 1997
  19. Porter AE. Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography, Environmental Science and Technology 2007; 41(8): 3012-3017 https://doi.org/10.1021/es062541f
  20. Ryman-Rasmussen JP. Penetration of intact skin by quantum dots with diverse physicochemical properties, Toxicological Sciences 2006; 91(1): 159-165 https://doi.org/10.1093/toxsci/kfj122
  21. Robert L, Maike DK, Markus S, Karin W and Franz O. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitationsmany questions, some answers, Mutation Research/Reviews in Mutation Research 2009; 681(2-3): 241-258 https://doi.org/10.1016/j.mrrev.2008.10.002
  22. Savic R. Micellar nanocontainers distribute to defined cytoplasmic organelles, Science 2003; 300(5619): 615-618
  23. Sera N, Tokiwa H and Miyata N. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides, Carcinogenesis 1996; 17(10): 2163-2169 https://doi.org/10.1093/carcin/17.10.2163
  24. Tinkle Sally S. Skin as a route of exposure and sensitization in chronic beryllium disease, Environmental Health Perspectives 2003; 111(9): 1202-1208 https://doi.org/10.1289/ehp.5999
  25. Tsuchiya T, Oguri I, Nakajima, Yamakoshi YN and Miyata N. Novel harmful effects of [C60] fullerene on mouse embryos in vitro and in vivo, FEBS Lett 1996; 393: 139-145 https://doi.org/10.1016/0014-5793(96)00812-5
  26. Zakharenk LP. Determination of the genotoxicity of fullerene C60 and fullerol using the method of somatic mosaics on cells of Drosophila melanogaster wing and SOS-chromotest, Genetika. 1993; 33(3): 405-409