Abstract
There are very small values and/or very big values which get out of the normal range for survey data in various fields. The reasons of occurrence for outlier are two. One of them is the error in process of data input and the other is the strange response of the respondent. If the data has outliers, then the summary statistics such as the mean and the variance produce misleading information. Therefore, researcher should be careful in detecting the outlier in data. In particular, it is very important problem for clinical fields because the cost of experiment is very high. This article introduce the Grubb test and Cochran test to detect outliers in the data and we apply this method for clinical data.
많은 분야에서 수집된 자료 중 데이터의 범위에서 많이 벗어난 아주 작은 값이나 아주 큰 값인 이상치가 종종 존재한다. 이런 이상치의 발생원인은 자료의 입력과정에서의 오류 또는 응답 과정에서 응답자의 특이한 답변 때문이다. 만약 자료에서 이상치가 존재할 경우 자료의 요약값인 평균과 분산에 많은 영향을 미쳐서 잘못된 정보가 산출된다는 문제점이 있다. 따라서 연구자는 자료에서 이상치가 존재하는지를 주의깊게 살펴보아야 한다. 특히 사람을 대상으로 실시한 임상자료의 경우 자료의 비용측면에서나 결과의 일관성 측면에서 이상치의 판단은 더욱 중요한 문제이다. 따라서 본 논문에서는 이상치를 판단하는 방법인 Grubb 검정과 Cochran 검정을 이용하여 임상자료에서의 이상치를 판단하는 방법을 소개하고자 한다.