• 제목/요약/키워드: 이상객체탐지

검색결과 82건 처리시간 0.028초

각도 기반 이상치 탐지 방법의 분석과 성능 개선 (Analysis and Performance enhancement of angle-based outlier detection)

  • 신용준;박정희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.452-457
    • /
    • 2010
  • 고차원 공간에서 효과적인 이상치 탐지 방법으로 제안되었던 각도 기반 이상치 탐지(Angle Based Outlier Detection)는 객체와 객체를 비교하는 척도로 각도 개념을 사용하여 고차원 공간에서도 일반적인 거리기반 이상치 측정 방법보다 좋은 이상치 탐지 성능을 가진다. 그러나 어떤 이상치가 다른 이상치에 의해 둘러싸인 경우 정상객체와 구분하기 어렵다는 문제가 있다. 이 논문에서는 기존의 이상치 탐지 방법을 개선한 방법을 제안하고 실험을 통하여 기존의 방법과 제안한 새로운 방법을 비교하여 향상된 성능을 입증한다.

  • PDF

멀티모달 딥 러닝 기반 이상 상황 탐지 방법론 (Anomaly Detection Methodology Based on Multimodal Deep Learning)

  • 이동훈;김남규
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.101-125
    • /
    • 2022
  • 최근 컴퓨팅 기술의 발전과 클라우드 환경의 개선에 따라 딥 러닝 기술이 발전하게 되었으며, 다양한 분야에 딥 러닝을 적용하려는 시도가 많아지고 있다. 대표적인 예로 정상적인 데이터에서 벗어나는 값이나 패턴을 식별하는 기법인 이상 탐지가 있으며, 이상 탐지의 대표적 유형인 점 이상, 집단적 이상, 맥락적 이중 특히 전반적인 상황을 파악해야 하는 맥락적 이상을 탐지하는 것은 매우 어려운 것으로 알려져 있다. 일반적으로 이미지 데이터의 이상 상황 탐지는 대용량 데이터로 학습된 사전학습 모델을 사용하여 이루어진다. 하지만 이러한 사전학습 모델은 이미지의 객체 클래스 분류에 초점을 두어 생성되었기 때문에, 다양한 객체들이 만들어내는 복잡한 상황을 탐지해야 하는 이상 상황 탐지에 그대로 적용되기에는 한계가 있다. 이에 본 연구에서는 객체 클래스 분류를 학습한 사전학습 모델을 기반으로 이미지 캡셔닝 학습을 추가적으로 수행하여, 객체 파악뿐만 아니라 객체들이 만들어내는 상황까지 이해해야 하는 이상 상황 탐지에 적절한 2 단계 사전학습 모델 구축 방법론을 제안한다. 구체적으로 제안 방법론은 ImageNet 데이터로 클래스 분류를 학습한 사전학습 모델을 이미지 캡셔닝 모델에 전이하고, 이미지가 나타내는 상황을 설명한 캡션을 입력 데이터로 사용하여 학습을 진행한다. 이후 이미지와 캡션을 통해 상황 특질을 학습한 가중치를 추출하고 이에 대한 미세 조정을 수행하여 이상 상황 탐지 모델을 생성한다. 제안 방법론의 성능을 평가하기 위해 직접 구축한 데이터 셋인 상황 이미지 400장에 대해 이상 탐지 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 단순 사전학습 모델에 비해 이상 상황 탐지 정확도와 F1-score 측면에서 우수한 성능을 나타냄을 확인하였다.

이미지 피라미드를 이용한 큰 객체 실시간 탐지 (Real-Time Detection of Large Objects using Image Pyramid)

  • 주권일;손승욱;안한세;정용화;박대희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.709-712
    • /
    • 2020
  • 영상 처리 응용을 위해 개발된 대부분의 CNN 기반 객체 탐지 기법은 mAP 를 올리기 위해 작은 객체 탐지에 더 주력하는 경향이 있다. 본 연구에서는 이미지 피라미드를 통한 서로 다른 해상도의 탐지 결과를 앙상블을 하여 작은 객체의 탐지 성능은 유지하면서 큰 객체의 탐지 성능을 향상시키고자 한다. 또한, 기존 NMS 방식의 문제점을 파악하고 새로운 NMS 방식인 G-NMS 를 제안한다. COCO 데이터로 실험 결과 서로 다른 해상도의 탐지 결과 앙상블을 통하여 30fps 이상의 실시간 탐지를 만족하면서 큰 객체에 대한 AP 가 0.5~1.5% 상승되었음을 확인하였다. 제안한 G-NMS 방식 적용시 큰 객체에 대한 AR 이 2.6~3.8% 상승되었으며, 작은 객체를 포함한 전체 mAP 가 0.7~0.9% 상승되었음을 확인하였다.

Mask R-CNN 기반 Aspect Ratio를 활용한 이상행동 검출 및 영역화 방법 (Abnormal Behavior Detection and Localization Using Aspect Ratio Based on Mask R-CNN)

  • 임현석;후쉬펑;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.99-101
    • /
    • 2022
  • 이상 행동을 탐지하는 딥러닝 기반 검지 시스템은 동영상 기반 데이터로부터 움직임을 보이는 객체를 추적하고 그 객체의 행동을 분석하여 정상적인 행동 범위를 벗어나는 패턴을 보이는 영역을 이상으로 탐지한다. 특히 생성적 적대 신경망(GAN)과 광학 흐름 추정(Optical flow estimation) 기법을 활용하여 움직임에 대한 특징 정보를 추출하고 이를 학습하여 행동 패턴에 대한 모델링을 수행한다. 모델 학습 및 테스트에 활용되는 데이터셋의 해상도가 낮거나 이상 행동을 표현하는 특징 정보가 부족할 경우 최종 모델 성능에 부정적 영향을 미치게 되며, 특히 광학 흐름이 표현하는 이동량 측면에서 차이가 크게 나지 않는 이상 객체의 경우 탐지가 정확하게 이뤄지지 않는다. 본 연구에서는 동영상 프레임에서 나타나는 객체의 평균 종횡비를 구하고 정상적인 비율을 벗어나는 객체에 대해서 이상 행동을 취하는 샘플로 처리하는 후처리단 모듈을 제안하여 최종적인 모델 성능을 향상시키는 방법을 고안한다.

  • PDF

규칙기반 다단계 침입 탐지 시스템 (A Rule-based Intrusion Detection System with Multi-Level Structures)

  • 민욱기;최종천;조성제
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.965-968
    • /
    • 2005
  • 본 논문에서는 보안 정책 및 규칙에 기반을 둔 네트워크 포트 기반의 오용침입 탐지 기능 및 센서 객체 기반의 이상침입 탐지 기능을 갖춘 리눅스 서버 시스템을 제안 및 구현한다. 제안한 시스템은 먼저 시스템에 사용하는 보안 정책에 따른 규칙을 수립한다. 이러한 규칙에 따라 정상적인 포트들과 알려진 공격에 사용되고 있는 포트번호들을 커널에서 동적으로 관리하면서, 등록되지 않은 새로운 포트에도 이상탐지를 위해 공격 유형에 대하여 접근제어 규칙을 적용하여 이상 침입으로 판단될 경우 접근을 차단한다. 알려지지 않은 이상침입 탐지를 위해서는 주요 디렉토리마다 센서 파일을, 주요 파일마다 센서 데이터를 설정하여 센서 객체가 접근될 때마다 감사로그를 기록하면서, 이들 센서 객체에 대해 불법적인 접근이 발생하면 해당 접근을 불허한다. 본 시스템은 보안정책별 규칙에 따라 다단계로 구축하여 특정 침입에 대한 더욱 향상된 접근제어를 할 수 있다.

  • PDF

이미지 이어붙이기를 이용한 인간-객체 상호작용 탐지 데이터 증강 (Human-Object Interaction Detection Data Augmentation Using Image Concatenation)

  • 이상백;이규철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.91-98
    • /
    • 2023
  • 인간-객체 상호작용 탐지는 객체 탐지와 상호작용 인식을 함께 풀어야하는 분야로 탐지 모델의 학습을 위해서 많은 데이터를 필요로 한다. 현재 공개된 데이터셋은 규모가 부족하여 데이터 증강 기법에 대한 요구가 커지고 있으나, 대부분의 연구에서 기존의 객체 탐지, 이미지 분할분야에서 활용하는 증강 기법을 활용하고 있는 실정이다. 이에 본 연구에서는 인간-객체 상호작용 탐지 분야에서 활용하는 데이터셋의 특성을 파악하고, 이를 통해 인간-객체 상호작용 탐지 모델 성능 향상에 효과적인 데이터 증강 기법을 제안한다. 본 연구에서 제안한 증강 기법에 대한 검증을 위하여 실험 환경을 구축하고, 기존의 학습 모델에 적용하여 증강 기법을 적용할 경우에 탐지 모델의 성능 향상이 가능함을 확인하였다.

다단계 구조를 가진 침입 탐지 및 방어 시스템의 구현 (Implementation of an Intrusion Detection and Prevention System with Multi-level Structures)

  • 민욱기;장혜영;최종천;조성제
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (A)
    • /
    • pp.136-138
    • /
    • 2005
  • 본 논문에서는 네트워크 포트 기반의 오용침입 탐지 기능 및 센서 객체 기반의 이상침입 탐지 기능을 갖춘 리눅스 서버 시스템을 제안한다. 제안한 시스템은 먼저 정상적인 포트 번호들 및 알려진 공격에 사용되고 있는 포트 번호들을 커널에서 동적으로 관리하면서, 포트 할당 시마다 감사로그를 기록하며 공격에 사용되는 포트인 경우에는 접속을 불허하여 침입을 방어한다. 알려지지 않은 이상침입 탐지를 위해서는 주요 디렉토리마다 센서 파일을, 주요 파일마다 센서 데이터를 설정하여 센서 객체가 접근될 때마다 감사로그를 기록하면서, 이들 센서 객체에 대해 불법적인 접근이 발생하면 해당 접근을 불허한다. 본 시스템은 네트워크 기반의 침입 탐지 및 호스트 기반의 침입 탐지 등 다단계로 구축되며 특정 침입들을 미리 예방할 수도 있다.

  • PDF

C3D 기반의 광학 흐름을 결합한 CCTV에서의 이상 탐지 (Anomaly Detection with C3D-based Optical Flow in CCTV)

  • 박슬기;홍명덕;조근식
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.7-9
    • /
    • 2020
  • 기존 CCTV 비디오에서 딥러닝 기반의 이상 탐지 연구는 객체의 행동 값만을 이용하여 이상을 탐지하였기 때문에, 시간 흐름에 따른 정보가 축소되는 문제점이 있었다. 그러나 CCTV 비디오에서의 이상의 원인은 다양한 요소와 시계열 분석에 따른 정보로 이루어져 있어 시간 정보를 유지하면서 다양한 특징 값을 사용한 모델을 설계할 필요가 있다. 따라서 본 논문에서는 C3D에 광학 흐름을 결합한 새로운 앙상블 모델을 제안한다. 실험 결과 본 논문에서 제안하는 모델이 75.83의 AUC를 얻어 기존에 연구되었던 행동 값만을 사용한 모델보다 높은 정확도를 달성하였다. 또한 이상 탐지 모델 설계 시 객체의 행동에 다양한 측면을 고려할 수 있는 여러 특징 값과 시계열 분석에 따른 정보를 사용하는 것이 적절하다는 결론을 도출하였다.

  • PDF

드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발 (Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques)

  • 류재현;한중곤;안호용;나상일;이병모;이경도
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.535-543
    • /
    • 2022
  • 농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.

이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 (Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets)

  • 김지영;허용;유기윤;김정옥
    • 한국측량학회지
    • /
    • 제31권6_1호
    • /
    • pp.483-491
    • /
    • 2013
  • 차량용 내비게이션의 빠른 확산과 스마트폰 등 개인 단말기의 측위 기술 발달로 사용자 중심위치기반서비스, 특히 보행자 내비게이션 서비스에 대한 관심이 증대되고 있다. 보행자 내비게이션 서비스를 위한 핵심정보인 수치지도는 대용량이고 짧은 갱신주기를 요구하는 경우가 많아 수치지도의 효율적인 갱신이 중요한 이슈가 된다. 본 연구에서는 구축시기가 상이한 이종의 도로망 데이터 셋에 형상유사도 기반 면 객체 매칭을 적용하여 변화 탐지하는 기법을 제안하였다. 변화탐지에 앞서 이종의 도로망 데이터 셋의 면 객체 매칭에서 탐지될 수 있는 갱신 유형을 정의하였다. 면 객체 매칭 기반 변화 탐지를 위하여 이종의 두 도로망 데이터 셋의 선형인 도로객체를 이들로 둘러싸인 면인 블록으로 변환하였다. 변환된 블록을 중첩하여 중첩된 블록 간의 형상유사도를 계산하고, 이 값이 0.6 이상인 것을 후보 블록 쌍으로 추출하였다. 객체 유형별로 이분 그래프 군집화와 오목다각형 특성을 적용하여 정의된 갱신유형별 블록 쌍을 탐지하고, 해당 블록 쌍을 구성하거나 내부에 있는 도로 세그먼트 간의 프레셰 거리를 계산하였다. 이때, 프레셰 거리가 50 이상인 도로명주소기본도 도로구간의 도로객체가 갱신 도로객체로 추출된다. 그 결과 0.965의 높은 탐색율을 보여 제안된 기법이 이종의 도로망 데이터 셋의 선형 객체의 변화탐지에 적용될 수 있음을 확인할 수 있었다.