DEVS(Discrete Event System Specification) 형식론은 계층적이고 모듈화된 형태로 이산사건 시스템을 기술한다. 본 논문에서는 CORBA를 이용한 Multi-threaded 분산 시뮬레이션 방법을 제시한다. 본 논문에서 제시한 시뮬레이션 방법은 기존에 선행 연구된 DEVSCluster를 기반으로 한다. DEVSCluster는 계층적 DEVS 모델들을 비 계층적 모델로 구성하여 시뮬레이션한다. DEVSCluster는 전통적인 계층적인 시뮬레이션 시 발생하는 overhead를 제거한다. CORBA기반으로 DEVSCluster를 구성함으로써 산업 표준에 맞는 확정을 가지는 분산 시뮬레이션이 가능해졌다. 그리고 CORBA를 이용함으로써 기존에 분산 시뮬레이션 동기화를 위한 새로운 패러다임도 적용이 가능해 졌다. 제시한 시뮬레이션 방법의 효용성을 보이기 위해 Windows 시스템에서 분산 시뮬레이션 엔진을 구현하여 대규모 물류 시스템으로 성능을 측정하였다.
기능경사 소재(FGM)에는 서로 다른 두 가지 구성입자들이 혼합되어 있는 경사층(graded layer)이 삽입되어, 소재 전 영역에 걸쳐 구성입자의 체적분율이 연속적이고 기능적으로 변화하도록 되어있다. 이러한 이상(dual-phase) 입자복합재의 열 기계적 거동을 해석함에 있어 필수적인 경사층의 물성치는 전통적으로 균질화 기법을 이용하여 예측되었다. 하지만, 이러한 균질화 기법은 구성입자의 형태, 분산구조 등과 같은 상세 형상을 반영하지 못하지 때문에 복합재의 총체적인 등가 물성치 예측에만 국한 되어왔다. 이러한 맥락에서 본 연구에서는 경사층을 미시역학적으로 이산화 모델링하고, 다양한 체적분율과 외부 하중조건에 대해 유한요소해석을 실시하여 이러한 균질화 기법들의 특성을 분석하였다.
큰 에디 모사(LES)는 복잡한 연소실 유동에서 RANS 모델과 비교해 난류 유동장에 대해 모델의 보편성과 더 정확한 결과를 제공하기 때문에 점차적으로 사용이 증대되고 있다. 내연 기관의 연소실 내 난류 유동장 해석을 큰 에디 모사를 사용하여 수행하였다. 이산화 방식, 초기 조건, 시간 간격과 SGS 모델과 같은 모델과 수치 인자에 따른 영향을 평가하였다. SGS 모델을 사용한 LES 모사는 실험치와 유사한 결과를 보여주었다.
배터리 관리시스템(BMS;battery management system)의 중요 고려요소인 SOC(state-of-charge) 및 SOH(state-of-health)의 전기적 등가회로 모델 기반 고성능 추정의 전제 조건은 배터리 단자전압의 안정된 실험데이터 확보이다. 그러나, 예상치 않은 에러로 인해 배터리 단자전압에 노이즈 성분이 포함될 경우 SOC 및 SOH 추정알고리즘의 성능저하가 우려된다. 이를 위해, 본 논문은 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis) 레벨에 따른 디노이징 최적 성능을 소개하고자 한다. 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법에 따른 디노이징 성능 차이를 보이고, 각 임계화 기법 적용 시 디노이징 최적 성능을 보이는 레벨을 선택한다.
본 논문에서는 Kinect 센서를 이용한 팔 제스처 인식 시스템의 설계에 대해 소개한다. 제스처 인식을 위한 기존의 연구들에서는 동적 시간 왜곡(DTW)에서 은닉 마코프 모델(HMM)에 이르기까지 다양한 방법들이 적용되어 왔다. 본 논문에서 제안하는 제스처 인식 시스템은 Kinect 센서를 통해 얻을 수 있는 순차적인 팔 관절 위치 데이터로부터 각 제스처 별 고유한 은닉 마코프 모델을 학습한다. 동일한 제스처를 수행하더라도 Kinect 센서에 포착되는 각 관절의 위치 좌표 값들은 팔의 길이와 방향에 따라 크게 달라질 수 있다는 문제점이 있다. 본 논문에서 제안하는 시스템에서는 다양한 환경 조건에서도 높은 제스처 인식 성능을 얻기 위해, 팔 관절들의 좌표 값으로 구성된 특징 벡터를 팔 관절들 간의 각도 값으로 변환하는 특징 변환 과정을 수행한다. 또한, 본 시스템에서는 은닉 마코프 모델의 학습과 적용의 효율성을 높이기 위해, 고차원 실수 관측 벡터들에 k-평균 군집화를 적용하여 이산 은닉 마코프 모델들을 위한 1차원 정수 시퀀스들을 구한다. 이와 같은 차원 축소와 이산화를 통해, 실시간 환경에서도 은닉 마코프 모델들을 효율적으로 제스처 인식에 이용할 수 있다. 끝으로, 서로 다른 두 가지 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안한 시스템의 높은 인식 성능을 입증해 보인다.
최근 다양한 분야에서 딥 러닝 기반의 많은 연구가 진행되고 있으며 이에 따라 딥 러닝 모델의 경량화를 통해 제한된 메모리를 가진 하드웨어에 올릴 수 있는 경량화 된 딥 뉴럴 네트워크(DNN)를 개발하는 연구도 활발해졌다. 이에 본 논문은 주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축을 제안한다. 이산 코사인 변환, 양자화, 군집화, 적응적 엔트로피 코딩 과정을 각 모델의 계층에 순차적으로 적용하여 DNN이 차지하는 메모리를 줄인다. 제안한 알고리즘을 통해 VGG16을 손실률은 1% 미만의 손실에서 전체 가중치를 3.98%까지 압축, 약 25배가량 경량화 할 수 있었다.
본 논문에서는 유한요소법을 이용하여 일정 장력을 받고 있는 가선계 모델에 대한 동적 접촉에 의한 파동 전파와 반사에 대한 연구를 연구하였다. 장력을 고려하기 위하여 새롭게 정의된 3 차원 빔 모델을 정의하였으며 이를 이산화하여 유한요소모델을 수립하였다. 또한 동적 접촉 해석을 위하여 라그랑지 승수법을 이용한 접촉 해석 모델을 정의하여 가선계와 질점하중간의 접촉해석을 수행하였다. 이동하중의 속도를 증가시키면서 발생하는 접촉력의 변화를 관찰하여 파동의 전파와 반사에 대한 수치적인 해를 구하였으며, 이를 이론적인 해와 비교하여 해석모델의 검증을 수행하였다.
4차 산업혁명에 따라 유역 및 하천관리 사업, 각종 풍수해 예방사업 분야에 다양한 스마트기술이 도입되고 있으나 건설현장 침수 피해 사고는 지속적으로 발생하고 있다. 굴착공사 현장에서 발생할 수 있는 침수피해를 사전에 예측하기 위해서는 공정별로 변화하는 현장상황을 반영하여 다양한 강우 시나리오를 기반으로 침수 예측 모델링이 선행되어야한다. 따라서 본 연구에서는 2차원 동수역학 모형인 HDM-2D 모형을 기반으로 굴착공사 현장 침수피해 예측 모델을 개발하여 굴착공사현장 침수 예·경보 시스템에 탑재하고자 한다. 침수피해 예측 모델은 천수방정식을 Petrov-Galerkin stabilized scheme 으로 이산화하여 해석하는 수평 2차원 동수역학 흐름해석모델로서 수로 및 지표면 등 다양한 지형 상황에서의 물 흐름을 상세하게 해석할 수 있다. 지형자료 생성 이후 경계조건 부여를 통해 수행되며 침수발생지역의 유속, 수심, 수위를 취득할 수 있다. 배수지나 굴착공사 현장에 2차원 흐름해석을 적용하는 경우 지형의 경사나 배치가 공간에 따라 변화하므로 불연속적인 흐름을 유발하여 모의결과의 계산 오차를 검토해야 한다. 2차원 침수피해 예측 모형의 정확성을 확인하기 위해 지면 돌출부가 있는 흐름 문제와 테스트베드 대상지에 침수해석 모형을 적용하였다. 돌출부 흐름 문제의 경우 돌출부를 지나며 발생하는 유속과 수심 모의 결과를 상용모형과 비교검증 하였으며 테스트베드 대상지역에 침수피해예측모형을 적용했을때 지형 경사에 따른 흐름의 변화와 침수양상을 확인할 수 있었다.
확률적 모델을 이용한 HMM 으로 한국어 연속 음성 인식시스템을 구성하였다. 학습 모델로서는 양자화 DCK가 없는 연속출력 확률밀도를 사용한 연속출력 확률분포 HMM과 과도 구간 및 정상 구간의 시간구조를 충분히 BYGUS할 수 없는 것을 계속시간 확률 파라메터를 추가하여 보완한 이산 지속시간 제어 연속출력 확률분포 HMM을 이용하였다. 인식 알고리즘은 시계열 패턴의 시간축상에서의 비선형 신축을 고려한 에 매칭으로서, 음절의 경계를 자동으로 검출하는 O에을 이용하였다. 실험에서 사용된 연속음성데이타는 4연 숫자음과 연속음성 10문장으로 하였다. 인식 실험 결과 4연 숫자음에서 CHMM은 80.7%, DDCHMM은 92.9%의 인식률을 얻었고, 신문 사설에서 발췌한 연속 음성문장의 경우 CHMM 54.2%, DDCHMM에서는 68.9%을 얻어, 시간장 제어를 고려한 DDCHMM이 CHMM보다 SHB은 인식률을 얻었다.
광자기 디스크 드라이브의 광학계로부터 검출 신호와 잡음을 시뮬레이션하는 방법을 연구하였다. 기록된 표식과 입사되는 레이저 빔 형태를 간단한 모델을 사용하여 기술하고 각각을 이산화시켜 재생 신호의 크기와 파형을 시륨레이션 하였다. 이렇게 시뮬레이션된 재생 신호에 Gaussian 램덤 잡음을 부가하고 일차원 이산 FFT(Fast Fourier Transform) 알고리즘을 수행하여 신호와 잡음 스펙트럼을 추정하였다. 또한 이로부터 CNR(Carrier to Noise Ratio) 값을 구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.