Deep Neural Network compression based on clustering of per layer in frequency domain

주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축

  • Published : 2020.11.28

Abstract

최근 다양한 분야에서 딥 러닝 기반의 많은 연구가 진행되고 있으며 이에 따라 딥 러닝 모델의 경량화를 통해 제한된 메모리를 가진 하드웨어에 올릴 수 있는 경량화 된 딥 뉴럴 네트워크(DNN)를 개발하는 연구도 활발해졌다. 이에 본 논문은 주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축을 제안한다. 이산 코사인 변환, 양자화, 군집화, 적응적 엔트로피 코딩 과정을 각 모델의 계층에 순차적으로 적용하여 DNN이 차지하는 메모리를 줄인다. 제안한 알고리즘을 통해 VGG16을 손실률은 1% 미만의 손실에서 전체 가중치를 3.98%까지 압축, 약 25배가량 경량화 할 수 있었다.

Keywords