• Title/Summary/Keyword: 이방성매질

Search Result 53, Processing Time 0.028 seconds

Polarization Analysis of Light Passing Through Non-uniform Uniaxial Media (비균일 단축 이방성 매질을 투과하는 빛의 편광상태 변화 표현)

  • Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Yong-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.161-167
    • /
    • 2010
  • We suggest an effective expression of transmission coefficients between uniaxial anisotropic media. To study the transmission of oblique incident light by stratified anisotropic planar structures, we included an imaginary isotropic layer sandwiched between those anisotropic media, and then considered multiple reflection within the imaginary layer. The adequacy of this expression is confirmed by comparing the polarization analysis of light passing through the anisotropic medium and the multi.layered anisotropic media.

Boundary conditions for Time-Domain Finite-Difference Elastic Wave Modeling in Anisotropic Media (이방성을 고려한 시간영역 유한차분법 탄성파 모델링에서의 경계조건)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwoon, Byung-Doo;Lim, Seung-Chul;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • Seismic modeling is used to simulate wave propagation in the earth. Although the earth's subsurface is usually semi-infinite, we cannot handle the semi-infinite model in seismic modeling because of limited computational resources. For this reason, we usually assume a finite-sized model in seismic modeling. In that case, we need to eliminate the edge reflections arising from the artificial boundaries introducing a proper boundary condition. In this study, we changed three kinds of boundary conditions (sponge boundary condition, Clayton and Engquist's absorbing boundary condition, and Higdon's transparent boundary condition) so that they can be applied in elastic wave modeling for anisotropic media. We then apply them to several models whose Poisson's ratios are different. Clayton and Engquist's absorbing boundary condition is unstable in both isotropic and anisotropic media, when Poisson's ratio is large. This indicates that the absorbing boundary condition can be applied in anisotropic media restrictively. Although the sponge boundary condition yields good results for both isotropic and anisotropic media, it requires too much computational memory and time. On the other hand, Higdon's transparent boundary condition is not only inexpensive, but also reduce reflections over a wide range of incident angles. We think that Higdon's transparent boundary condition can be a method of choice for anisotropic media, where Poisson's ratio is large.

SWEET algorithm을 이용한 탄성매질의 traveltime과 amplitude 계산

  • 차영호;신창수;서정희;임해룡
    • Proceedings of the KSEEG Conference
    • /
    • 2001.04a
    • /
    • pp.115-118
    • /
    • 2001
  • Suppressed Wave equation Estimation of Traveltime (SWEET, Shin et, al., 2000) 알고리즘을 이용하여 등방성 및 이방성 탄성 매질에 대한 ched 주시와 진폭을 계산하는 방법을 개발하였다. SWEET 알고리즘을 2차원 등방성 및 이방성 탄성 매질의 속도 구조에 적용하여 P파의 초동 주시와 진폭을 계산 할 수 있었다. 본 논문에서는 간단한 등방성 균질 탄성 모형, 복잡한 등방성 탄성 모형 및 간단한 이방성 균질 모형에 대한 수치 계산 결과를 보여 줄 것이다.

  • PDF

Seismic Anisotropy Physical Modeling with Vertical Transversely Isotropic Media (VTI 매질의 탄성파 이방성 축소모형실험)

  • Ha, Young-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Although conventional seismic data processing is based on the assumption that the media are isotropic, the subsurface is often anisotropy in shale formation or carbonate with cracks and fractures. This paper presents the anisotropic parameter and seismic modeling in transversely isotropic media with a vertical symmetry axis using seismic physical modeling. The experiment was successfully carried out with VTI media, laminated bakelite material, using contact transducer of p and s-wave transmission. The variation of velocities with angle of incidence was clearly shown in anisotropic material. Comparing these velocities with the calculated phase velocities, the (P) and (S)-wave velocity observed in anisotropic material was a very good agreement with the calculated values. Anisotropic parameter ${\varepsilon}$, ${\delta}$, ${\gamma}$ was estimated by using Lame's constant calculated from the observed velocity. For the purpose of testing (S)-wave polarization, a birefringence experiment was carried out. The higher velocity was associated with the polarization parallel to the fracture, and the lower velocity was associated with the polarization perpendicular to the fracture.

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Seismic Traveltime Tomography in Inhomogeneous Tilted Transversely Isotropic Media (불균질 횡등방성 매질에서의 탄성파 주시토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.229-240
    • /
    • 2007
  • In this study, seismic anisotropic tomography algorithm was developed for imaging the seismic velocity anisotropy of the subsurface. This algorithm includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudobeta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage. The algorithm of anisotropic tomography is verified through the numerical experiments. And, it is applied to the real field data measured at limestone region and the results are discussed with the drill log and geological survey data. The anisotropic tomography algorithm will be able to provide the useful tool to evaluate and understand the geological structure of the subsurface more reasonably with the anisotropic characteristics.

Reverse-time Migration for VTI and TTI Media (VTI 및 TTI 매질에서의 역시간 구조보정)

  • Kwak, Na-Eun;Min, Dong-Joo;Bae, Ho-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 2011
  • Reserve-time migration (RTM) using a two-way wave equation is one of the most accurate migration techniques. RTM has been conducted by assuming that subsurface media are isotropic. However, anisotropic media are commonly encountered in reality. Conventional isotropic RTM may yield inaccurate results for anisotropic media. In this paper, we develop RTM algorithms for vertical transversely isotropic media (VTI) and tilted transversely isotropic media (TTI). For this, the pseudo-acoustic wave equations are used. The modeling algorithms are based on the high-order finite-difference method (FDM). The RTM algorithms are composed using the cross-correlation imaging condition or the imaging condition using virtual sources. By applying the developed RTM algorithms to the Hess VTI and BP TTI models, we could obtain better images than those obtained by the conventional isotropic RTM.

MT response on the two dimensional anisotropic structure (2차원 이방성 구조의 MT 반응)

  • Lee, Chun Gi;Gwon, Byeong Du
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.123-134
    • /
    • 1999
  • Magnetotelluric responses may be affected by strong anisotropy of the high-conductivity layers (HCL) in the upper mantle or lower crust. We have studied two-dimensional anisotropy MT modelling to examine the effect of high anisotropic media. Electrical properties of a homogeneous anisotropic body are defined by a symmetric conductivity tensor and the problem is described by coupled diffusion equation in the frequency domain. In two-dimensional anisotropic environments, diagonal elements of the impedance tensor have higher values than those in isotropic environments. In some cases, TM mode phases reach more than 90°and apparent resistivities decrease for some frequency range because of telluric distortion. GB decomposition may be used to recover regional responses, but can be affected by the regional anisotropic effect. Considering these results, BC87 dataset was interpreted with a modified anisotropic model.

  • PDF

Spectral Domain Analysis of Resonant Frequency in Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap and Superstrate (공기 갭과 덮개층을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나 공진 주파수의 파수 영역 해석)

  • Lee, Sang-Mok;Yoon, Joong-Han;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.91-99
    • /
    • 2001
  • Spectral domain of resonant frequency rectangular microstrip patch antenna on anisotropic substrates and superstrate with airgap are analyzed. First, we derive dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations Into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. The resonant frequencies in the variation of air gap, patch length and permittivity of superstrate anisotrpy ratio of anisotrpic superstrate are presented and analyzed.

  • PDF

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.