• Title/Summary/Keyword: 이미지 생성형 인공지능

Search Result 19, Processing Time 0.029 seconds

Exploring the Perceived Value of Generative AI and the Determinants of Continuous Use Intention (생성형 인공지능(Generative AI)에 대한 지각된 가치와 지속이용의도 결정요인 탐색)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.709-720
    • /
    • 2024
  • By inputting consumer satisfaction as an exogenous variable into the value-based adoption model, this study explored the factors that influence the user's intention to continue using image-centered generative AI. Briefly presenting the main results, first, enjoyment did not significantly affect perceived value, but usefulness had a positive effect on perceived value. Second, Fee and technicality had a negative effect on perceived value. Third, perceived value had a positive effect on consumer satisfaction and continuous use intention. Fourth, consumer satisfaction had a positive effect on continuous use intention. Based on the above results, it is important to recognize the usefulness of image-centered generated AI and enjoyment in the process of use in order to increase the user's intention to continue using image-centered generated AI, and at the same time, it will be important to increase the user's perceived value and satisfaction by minimizing the reasonable fee and complexity in the method of use at the level acceptable to the users.

A Study on the use of generative AI in creative and artistic fields (창작·예술 분야의 생성형 aI 활용 방법에 대한 연구)

  • Dong-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.569-572
    • /
    • 2023
  • 최근 하루가 다르게 발전하고 있는 생성형 AI가 창작과 예술 분야에 어떤 영향을 미칠 수 있는지, 새롭게 등장하고 있는 다양한 분야에서 활용 가능한 획기적인 기능 등을 살펴보고 이를 바탕으로 새로운 창작 방향을 제시할 수 있는 방법들을 살펴보려 한다. 최근, 작곡가와 소설가들은 물론, 디지털 아티스트들까지도 생성형 AI를 활용하여 독특한 음악, 글, 그리고 이미지를 창조하는데 성공했다는 사례들이 속속 드러나고 있고 영상, 게임, 웹툰 등 많은 산업현장에서 직접적인 활용방법에 대한 연구결과가 등장하고 실제 적용 사례도 늘어나고 있다. 이미지 생성기인 미드저니와 스테이블디퓨전 같은 도구들은 혁신적인 방법으로 빠르게 높은 퀄리티의 이미지를 생성하고 다양한 아이디어를 제공 받을 수 있는 도구로 창작과 예술 분야에서 큰 관심을 받고 있다. 이러한 발전은 창작과 예술 분야에서 생성형 AI의 무한한 가능성을 보여주는 한편, 인간의 창의성 침해와 예술가들의 노력 희석에 대한 비판적 시각을 불러일으키기도 한다. 본 연구는 이런 다양한 관점에서 창작·예술 분야의 생성형 AI 활용을 깊이 있게 탐구한다. 그 과정에서 여러 생성형 AI 도구들, 특히 이미지 생성기 미드저니와 스테이블디퓨전의 기능과 활용 방안, 그로 인한 사회적, 윤리적 측면을 분석하며, 창작·예술 분야에서의 생성형 AI 활용의 적절한 방향성과 미래 전망을 제시해 보고자 한다.

  • PDF

Utilization Strategies of Generative AI Platforms for CG Education (CG 교육을 위한 생성형 인공지능 플랫폼 활용 방안)

  • Donghee Suh
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.357-364
    • /
    • 2023
  • Due to the rapid advancement of AI technology, generative artificial intelligence platforms are experiencing innovative applications in various fields. In this paper, it examines research cases involving the utilization of AI in education, explore instances where generative AI platforms are applied in the realm of creative endeavors, and discuss the direction of utilizing generative AI in educational contexts. In the field of computer graphics, this study introduced generative AI platforms that are applicable for image creation, editing, and video editing. It also proposed platforms that can be utilized in the video editing production process. These generative AI platforms not only offer advantages in terms of efficiency, by reducing the efforts of creators and saving time in the production process, but they also present positive aspects in enhancing individual capabilities. It is advocated that their swift integration into education is necessary, considering these benefits. This study aims to provide direction for the expansion of creative education utilizing generative AI platforms.

Secure Coding for SQL Injection Prevention Using Generative AI

  • Young-Bok Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.61-68
    • /
    • 2024
  • In this paper, Generative AI is a technology that creates various forms of content such as text, images, and music, and is being utilized across different fields. In the security sector, generative AI is poised to open up new possibilities in various areas including security vulnerability analysis, malware detection and analysis, and the creation and improvement of security policies. This paper presents a guide for identifying vulnerabilities and secure coding using ChatGPT for security vulnerability analysis and prediction, considering the application of generative AI in the security domain. While generative AI offers innovative possibilities in the security field, it is essential to continuously pursue research and development to ensure safe and effective utilization of generative AI through in-depth consideration of ethical and legal issues accompanying technological advancements.

Agricultural Applicability of AI based Image Generation (AI 기반 이미지 생성 기술의 농업 적용 가능성)

  • Seungri Yoon;Yeyeong Lee;Eunkyu Jung;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.120-128
    • /
    • 2024
  • Since ChatGPT was released in 2022, the generative artificial intelligence (AI) industry has seen massive growth and is expected to bring significant innovations to cognitive tasks. AI-based image generation, in particular, is leading major changes in the digital world. This study investigates the technical foundations of Midjourney, Stable Diffusion, and Firefly-three notable AI image generation tools-and compares their effectiveness by examining the images they produce. The results show that these AI tools can generate realistic images of tomatoes, strawberries, paprikas, and cucumbers, typical crops grown in greenhouse. Especially, Firefly stood out for its ability to produce very realistic images of greenhouse-grown crops. However, all tools struggled to fully capture the environmental context of greenhouses where these crops grow. The process of refining prompts and using reference images has proven effective in accurately generating images of strawberry fruits and their cultivation systems. In the case of generating cucumber images, the AI tools produced images very close to real ones, with no significant differences found in their evaluation scores. This study demonstrates how AI-based image generation technology can be applied in agriculture, suggesting a bright future for its use in this field.

Implementation of Hair Style Recommendation System Based on Big data and Deepfakes (빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현)

  • Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.13-19
    • /
    • 2023
  • In this paper, we investigated the implementation of a hairstyle recommendation system based on big data and deepfake technology. The proposed hairstyle recommendation system recognizes the facial shapes based on the user's photo (image). Facial shapes are classified into oval, round, and square shapes, and hairstyles that suit each facial shape are synthesized using deepfake technology and provided as videos. Hairstyles are recommended based on big data by applying the latest trends and styles that suit the facial shape. With the image segmentation map and the Motion Supervised Co-Part Segmentation algorithm, it is possible to synthesize elements between images belonging to the same category (such as hair, face, etc.). Next, the synthesized image with the hairstyle and a pre-defined video are applied to the Motion Representations for Articulated Animation algorithm to generate a video animation. The proposed system is expected to be used in various aspects of the beauty industry, including virtual fitting and other related areas. In future research, we plan to study the development of a smart mirror that recommends hairstyles and incorporates features such as Internet of Things (IoT) functionality.

Development of integrated data augmentation automation tools for deep learning (딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발)

  • Jang, Chan-Ho;Lee, Seo-Young;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

A Study on the Method of Creating Realistic Content in Audience-participating Performances using Artificial Intelligence Sentiment Analysis Technology (인공지능 감정분석 기술을 이용한 관객 참여형 공연에서의 실감형 콘텐츠 생성 방식에 관한 연구)

  • Kim, Jihee;Oh, Jinhee;Kim, Myeungjin;Lim, Yangkyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.533-542
    • /
    • 2021
  • In this study, a process of re-creating Jindo Buk Chum, one of the traditional Korean arts, into digital art using various artificial intelligence technologies was proposed. The audience's emotional data, quantified through artificial intelligence language analysis technology, intervenes in various object forms in the projection mapping performance and affects the big story without changing it. If most interactive arts express communication between the performer and the video, this performance becomes a new type of responsive performance that allows the audience to directly communicate with the work, centering on artificial intelligence emotion analysis technology. This starts with 'Chuimsae', a performance that is common only in Korean traditional art, where the audience directly or indirectly intervenes and influences the performance. Based on the emotional information contained in the performer's 'prologue', it is combined with the audience's emotional information and converted into the form of images and particles used in the performance to indirectly participate and change the performance.

Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced (생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로)

  • Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.549-571
    • /
    • 2024
  • As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.

A Study on Generative Artificial Intelligence-Based Data Augmentation Techniques for Enhancing Object Detection Performance (객체 탐지 성능 향상을 위한 생성형 인공지능 기반 데이터 증강 기법 연구)

  • Dohee Kim;Myongho Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.51-54
    • /
    • 2023
  • 최근 딥러닝 기술의 발달로 물체 탐지를 위한 객체 인식 분야가 기계학습을 접목한 연구가 급격히 증가하고 있다. 하지만, 탐지하려는 물체가 다른 객체에 가려진 경우와 같이 특수한 상황에 대한 데이터의 수량이 부족하여 성능 저하를 야기한다는 점과, 객체 탐지 수행 과정에서 작은 객체의 탐지가 어렵다는 한계점이 있다. 본 연구는 전술한 문제점을 보완할 방법을 제안한다. 데이터 증강 기법을 이용하여 클래스가 부족한 데이터의 양을 늘려 학습 데이터를 증강시켰다. 한편, SRGAN을 사용하여 작은 객체를 확대시킨 뒤 이미지를 합성시켜 데이터를 구성하였다. 제안된 방법은 PyTorch 환경에서 YOLOv5를 수행한 결과, 객체 탐지 성능이 향상되는 것을 확인할 수 있었다.

  • PDF