인터넷의 발전으로 수많은 이미지와 비디오를 손쉽게 이용할 수 있게 되었다. 이미지와 비디오 데이터의 양이 기하급수적으로 증가함에 따라, JPEG, HEVC, VVC 등 이미지와 비디오를 효율적으로 저장하기 위한 부호화 기술들이 등장했다. 최근에는 인공신경망을 활용한 학습 기반 모델이 발전함에 따라, 이를 활용한 이미지 및 비디오 압축 기술에 관한 연구가 빠르게 진행되고 있다. NNIC (Neural Network based Image Coding)는 이러한 학습 가능한 인공신경망 기반 이미지 부호화 기술을 의미한다. 본 논문에서는 NNIC 모델과 인공신경망 기반의 초해상화(Super Resolution) 모델을 합동훈련하여 기존 NNIC 모델보다 더 높은 성능을 보일 수 있는 방법을 제시한다. 먼저 NNIC 인코더(Encoder)에 이미지를 입력하기 전 다운 스케일링(Down Scaling)으로 쌍삼차보간법을 사용하여 이미지의 화소를 줄인 후 부호화(Encoding)한다. NNIC 디코더(Decoder)를 통해 부호화된 이미지를 복호화(Decoding)하고 업 스케일링으로 초해상화를 통해 복호화된 이미지를 원본 이미지로 복원한다. 이때 NNIC 모델과 초해상화 모델을 합동훈련한다. 결과적으로 낮은 비트량에서 더 높은 성능을 볼 수 있는 가능성을 보았다. 또한 합동훈련을 함으로써 전체 성능의 향상을 보아 학습 시간을 늘리고, 압축 잡음을 위한 초해상화 모델을 사용한다면 기존의 NNIC 보다 나은 성능을 보일 수 있는 가능성을 시사한다.
문서 이미지의 이진화는 문서 인식의 이전 단계에서 주로 사용되며, 이진화의 성공 여부에 따라 문서 인식의 결과에 영향을 미치는 중요한 단계로 볼 수 있다. 지금까지 문서 이미지를 이진화 하기 위한 다양한 기법들이 연구되었지만, 문서 이미지의 상태에 따라 그 결과는 다양하다. 본 논문에서는 객체 추출에 많이 이용되는 MSER(Maximally Stable Extremal Region)을 이용하여 문서 이미지를 이진화하는 기법을 제안한다. 먼저 문서 이미지에서 MSER 객체를 추출한다. 추출된 MSER 객체는 그 자체로 문서 이미지 이진화에 사용되기는 어렵기 때문에 사용하기 적합한 형태로 변경되는 과정을 거친다. 그리고 최종 MSER 객체와 문서 이미지로부터 추출한 대비 이진 이미지를 이용하여 최종 이진 이미지를 계산한다. 실험결과는 본 논문에서 제안한 방법이 문서 이미지의 이진화에 유용함을 보여준다.
본 연구에서는 실제 기증받은 시체를 이용하여 인체의 각 구조물을 실제 모습 그대로 3D 이미지화하는 과정에 대해 알아보았다. 인체의 구조물을 3D 로 이미지화하는 과정은 다음과 같다. 먼저 시체를 0.2mm 간격으로 절단하여 절단면의 사진을 찍은 후, 각 절단면의 사진에서 각각의 구조물을 구역화하여 색칠을 한 후, 구역화한 이미지에서 외곽선을 추출하여 벡터 이미지를 만든다. 이 외곽선을 1mm 간격으로 쌓아 올린 후 그 표면을 재구성하여 3D 이미지로 변환하는 과정으로 진행되었다. 3D 이미지의 제작은 가슴 부위에 한정하여 이루어졌다. 인체의 해부학적인 모형을 3D 이미지로 시각화함으로써 얻는 효과는 일반인을 대상으로 인체의 내부에 대한 시각적인 호기심을 충족시켜주고 의학 상식을 넓히는데 도움을 줄 수 있을 것 이다. 또한 의대생들을 비롯한 의학 전문가들에게는 생생한 해부학 강의용으로도 활용 가능하다. 향후 Haptic 시스템을 이용한 의료 실습 어플리케이션과 접목될 수도 있을것이고, fMRI 데이터를 비롯한 타 데이터와의 융합을 통해 시각화하여 서비스 할 수도 있다. 이처럼 인체의 3D 모형은 의료분야에서 광범위하게 활용될 수 있는 데이터로써 그 가치를 지닐 것이다.
본 논문은 원본이미지와 은닉이미지의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 이미지은닉의 한 방법으로 특이치 분해와 퍼지 군집화를 이용한 벡터양자화를 이용한 워터마킹 방법을 소개하였다. 실험에서는 은닉된 이미지의 비가시성과 외부공격에 대한 강인성을 증명하였다.
본 논문에서는 스케일링-불변 윤곽선 이미지 매칭의 시각화 도구를 제안한다. 윤곽선 이미지를 시계열로 나타낼 경우, 시계열 매칭 기술을 활용하여 대용량 윤곽선 이미지 매칭을 보다 빠르게 수행할 수 있다. 이러한 윤곽선 이미지 매칭에서, 스케일링 불변의 지원은 스케일된 유사 이미지를 검색하기 위한 중요한 요소이다. 본 논문에서는 스케일링-불변 윤곽선 이미지 매칭 시스템을 클라이언트-서버 모델을 기반으로 구현한다. 먼저, 클라이언트는 질의 이미지를 시계열로 변환하고, 스케일링 팩터 구간 및 허용치와 함께 서버에 전달하고, 매칭 결과로 반환된 이미지를 차트 형태로 시각화한다. 다음으로 서버는 다차원 인덱스를 활용하여 대용량 윤곽선 시계열 데이터에 대한 빠른 시계열 매칭을 수행한다. 구현 결과, 제안하는 윤곽선 이미지 매칭 시각화 도구는 질의 이미지와 스케일링-불변 결과 이미지를 세 가지의 차트를 통해 직관적으로 비교 및 분석 가능하게 하였다.
색 양자화는 많은 수의 색으로 표현된 이미지를 최대한 유사하게 표현 할 수 있는 더 적은 수의 대표색을 찾는 문제이다. 색 양자화를 할 때, 원본 이미지의 어느 색을 보존시킬지를 결정하는 것은 결과 이미지의 품질과 직결된 중요한 문제이다. 본 연구에서는 일반적으로 이미지는 관심 영역과 비 관심영역으로 구분된다는 점에 착안하여 이미지에서 관심 영역의 색을 더 많이 보존시키는 양자화 방법을 제안한다. 본 연구에서는 이미지의 관심 영역에 대한 정보를 특정 주파수 대역의 범위로 입력받아 해당주파수 대역에 포함되는 부분을 이미지 공간에서 찾는 과정과 찾아낸 영역의 색을 더 많이 보존시켜 대표색을 구하는 과정으로 구성되는 색 양자화 방법을 제시한다. 관심 영역을 찾는 방법의 정확도를 실험을 통해 평가하였으며 본 논문이 제시하는 컬러 양자화 기법의 품질을 다른 방법의 품질과 비교하여 평가하였다.
본 연구는 30명의 고등학교 2학년 학생들을 통해서 수학적 시각화의 구성 요소를 알아보고, 시각화 구성 요소들이 수학 문제 해결 과정에서 어떻게 활용되는지를 알아보는 것이다. 특히, 30명의 학생들 중 시각성 평가가 높은 5명의 학생들에 대해서 질적 사례 연구를 실시하였다. 분석 결과를 보면, 시각화의 구성 요소는 크게 정신적 이미지, 외적 표상, 이미지의 변형 및 조작, 공간 시각화 능력으로 범주화 (Guti$\acute{e}$rrez, 1996) 되었고, 각 요소마다 더 세분화되어져 나타났다. 또한, 수학 문제 해결 과정에서 시각화 요소들은 외적 표상을 생성하기 전에 기본적으로 정신적 이미지를 생성하고 있었고, 정형화된 정신적 이미지의 경우 문제 해결에 대한 학생들의 풍부한 사고를 억제하고 문제에 대한 부적절한 풀이 결과를 이끌어낼 수 있는 부정적인 영향을 주었다. 차원 변화에 의해서 이루어지는 이미지 변형 및 조작을 어려워하는 학생들이 있었으나, 문제 해결 과정에서 답을 추론하기 위한 이미지 탐색 활동과 도출된 답의 정당화를 위해서 이미지 조작 활동을 활용하고 있었다.
사람의 이미지를 보고 느끼는 감성인식은 환경, 개인적 성향에 따라 다양하게 변화한다. 그리하여 이미지 감성인식을 숫자로 제어하려는 감성컴퓨터 연구에 집중되고 있다. 그렇지만 기존의 감성컴퓨팅 모형은 숫자화된 객관적이고, 명확한 측정이 미흡한 상황이다. 따라서 이미지 감성인식을 감성컴퓨팅을 통해 정량화하고, 객관적인 평가 방식의 연구가 필요한 상황이다. 이에 본 논문은 이미지 감성인식을 계산 방식에 따라 숫자화한 정량화로 감성크기를 표현했다. 그리하여 이미지 감성인식의 주요한 속성인 색채를 구성인자로 적용한다. 또한 디지털 색채 감성컴퓨팅을 적용하여 계산하는데 연구의 중점을 두었다. 이미지 색채 감성컴퓨팅 연구방식은 감성속성인 색상, 명도, 채도에 중요도에 따른 가중치를 감성점수에 반영한다. 그리고 감성점수를 이미지 감성계산식에 적용하여 쾌정도(X축), 긴장도(Y축)를 숫자 방식으로 계산한다. 거기에 쾌정도(X축), 긴장도(Y축)의 교차하는 위치점을 이미지 감성좌표의 감성점으로 위치한다. 이미지 색채 감성좌표는 러셀의 핵심 효과(Core Affect)를 적용하여 16가지 주요대표감성을 기반으로 한다. 이미지 감성점은 기준의 위치에서 대표감성크기와 감성상관관계를 숫자화하고, 이미지 감성을 정량화한다. 그리하여 이미지 감성인식은 숫자 크기로 비교한다. 감성점수의 대소에 따라 감성이 변화함을 증명한다. 비교 방식은 이미지 감성인식을 16개 대표감성과 연관된 감성의 상위 5위로 구분하고, 집중된 대표감성크기를 비교 분석한다. 향후 감성컴퓨팅 방식이 사람의 감성인식과 더 유사할 수 있도록 감성계산식의 연구가 필요하다.
딥러닝은 다양한 컴퓨터 비전 문제를 해결할 수 있지만, 대량의 데이터셋이 필요하다. 본 논문에서는 대형 이미지 데이터셋을 구축하기 위해 이미지 이진화 기반 데이터 증강 기법을 제안한다. 이미지 이진화를 사용하여 특성을 추출하고 추출된 나머지 픽셀을 랜덤하게 배치하여 새로운 이미지를 생성한다. 생성된 이미지는 원본 이미지와 유사한 품질을 보여주며, 딥러닝 모델에서도 뛰어난 성능을 보였다.
야외 환경을 카메라로 촬영한 일반 영상에서 텍스트 이미지를 검출하고 인식하는 기술은 로봇 비전, 시각 보조 등의 기반이 되는 기술로 활용될 수 있어 매우 중요한 기술이다. 하지만 저해상도의 텍스트 이미지의 경우 텍스트 이미지에 포함된 노이즈나블러 등이 더 두드러지기 때문에 텍스트 내용을 인식하는 것이 어렵다. 이에 본 논문은 일반 영상에서의 저해상도 한글 및 영어 텍스트에 대한 이미지 초해상화를 통해 텍스트 인식 정확도를 개선하였다. 트랜스포머에 기반한 모델로 한글 및 영어 텍스트에 대한 이미지 초해상화를 수행하였으며, 영어 및 한글 데이터셋에 대해 제안한 초해상화 방법을 적용했을 때 그렇지 않을 때보다 텍스트 인식 성능이 개선되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.