Design is a key factor that determines the competitiveness of products in the textile and fashion industry. It is very important to measure the similarity of the proposed design in order to prevent unauthorized copying and to confirm the originality. In this study, a deep learning technique was used to quantify features from images of textile designs, and similarity was measured using Spearman correlation coefficients. To verify that similar samples were actually detected, 300 images were randomly rotated and color changed. The results of Top-3 and Top-5 in the order of similarity value were measured to see if samples that rotated or changed color were detected. As a result, the VGG-16 model recorded significantly higher performance than did AlexNet. The performance of the VGG-16 model was the highest at 64% and 73.67% in the Top-3 and Top-5, where similarity results were high in the case of the rotated image. appear. In the case of color change, the highest in Top-3 and Top-5 at 86.33% and 90%, respectively.
본 논문에서는 영상의 화소값으로부터 추출된 유사 특징점(quasi-feature point)을 이용한 이미지 모자이킹 알고리즘을 제안한다. 유사 특징점의 선택은 전역 정합(global matching)의 결과로부터 중첩된 영역을 4개의 부영역(sub-area)으로 분할하고, 각각의 분할된 부 영역에서 국부 분산(local variance)의 크기가 큰 블록을 선정, 이 블록의 중심 화소를 유사 특징점으로 선택한다. 유사 특징점에 대한 정합은 카메라 이동에 따른 왜곡(distortion)과 조명의 변화를 고려한 블록 정합 알고리즘(block matching algorithm)을 이용한다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.40
no.3
/
pp.171-180
/
2003
A content-based image retrieval(CBIR) system builds the image database using low-level features such as color, shape and texture and provides similar images that user wants to retrieve when the retrieval request occurs. What the user is interest in is a response time in consideration of the building time to build the index database and the response time to obtain the retrieval results from the query image. In a content-based image retrieval system, the similarity computing time comparing a query with images in database takes the most time in whole response time. In this paper, we propose the two-phase search method with the clustering technique of feature vector in order to minimize the similarity computing time. Experimental results show that this two-phase search method is 2-times faster than the conventional full-search method using original features of ail images in image database, while maintaining the same retrieval relevance as the conventional full-search method. And the proposed method is more effective as the number of images increases.
Jo, Jaechoon;Lee, Chanhee;Lee, Dongyub;Lim, Heuiseok
Journal of Digital Convergence
/
v.16
no.12
/
pp.301-307
/
2018
The most of the IR focus on the method for searching the document, so the keyword-based IR system is not able to reflect the feature information of the image. In order to overcome these limitations, we have developed a system that can search similar images based on the vector information of images, and it can search for similar images based on sketches. The proposed system uses the GAN to up sample the sketch to the image level, convert the image to the vector through the CNN, and then retrieve the similar image using the vector space model. The model was learned using fashion image and the image retrieval system was developed. As a result, the result is showed meaningful performance.
In this paper, we propose a hierarchical image classification scheme for efficient object image classification. In the non-hierarchical image classification, which classifies the existing whole images at one time, it showed that objects with relatively similar shapes are not recognized efficiently. Therefore, in this paper, we introduce the image classification method in the hierarchical structure which attempts to classify object images hierarchically. Also, we introduce to the efficient class structure and algorithms considering the scalability that can occur when a deep learning image classification is applied to an actual system. Such a scheme makes it possible to classify images with a higher degree of confidence in object images having relatively similar shapes.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.295-299
/
2002
본 연구에서는 피륙의 물리화학적 특성에 의해 결정되는 촉감, 태 이외에도 색채, 무의 등 여러 요소들의 영향을 받아 복합적으로 표현되는 의류소재의 총체적인 개념인 의류소재 이미지는 어떤 것들이 있으며 이러한 이미지들은 어떻게 분류될 수 있는지를 알아보기 위하여 의류소재 이미지의 평가를 위한 축을 개발해 보았다. 1995년부터 2000년까지의 Texjournal과 인터패션플래닝에서 발간되는 98/99FW부터 0255까지 트렌드 북에서 소재를 설명하는 형용사를 조사하여 유사한 형용사를 통합 처리하여 87개의 형용사를 최종 추출하여 형용사쌍을 만들고 소재 자극 없이 형용사쌍이 주는 소재이미지만을 가지고 쌍비교법을 통해 유사성을 7점 척도로 표시하도록 하였다. 얻어진 결과를 다차원척도법을 이용하여 분석하여 87개의 형용사의 평가차원을 살펴보았다. 의류소재 이미지를 평가하는 축을 다차원 척도법을 이용하여 개발한 결과 '남성적-여성적', '새로운-낡은 듯한', '캐주얼-클래식', '모호한-정돈된'의 4가지 차원의 8개축이 개발되었다.
Journal of the Korean association of regional geographers
/
v.21
no.3
/
pp.569-582
/
2015
This study deals with six spa touristy places to analyze the similarity in image and selection factor recognition through multidimensional scaling method. The result is as following. First, as a result of analysis in the similarity in Image of the 6 touristy Spa places, each "Asan and Onyang" and "Suanbo and Ducksan" form different similar image groups. However, Yoosung does not share the similarity in Image that other Spa places own. Second, as a result of analysis of selection factors in the six touristy spa places, it is found out that there is no big difference in selection factors such as 'spa facility', 'a fee to use', and 'quality of service' in the six spa places. Yet, Onyang, Yoosung, Ducksan, and Suanbo spa reflect high selection factor as 'a recognized spa place' different from Asan and Dogo where the reflection of selection factor is low. Onyang, Yoosung, and Dogo regions reflect high selection factor as a 'Touristy destination' while Asan reflects low selection factor.
The Journal of the Convergence on Culture Technology
/
v.7
no.3
/
pp.591-598
/
2021
It's possible to get the word-vector by the statistical SVD or deep-learning CBOW and LSTM methods and theses ones learn the contexts of forward/backward words or the sequence of following words. It's used to analyze the poems by Ki Hyung-do with similar words recommended by the word-vector showing the core images of the poetry. It seems at first sight that the words don't go well with the images but they express the similar style described by the reference words once you look close the contexts of the specific poems. The word-vector can analogize the words having the same relations with the ones between the representative words for the core images of the poems. Therefore you can analyze the poems in depth and in variety with the similarity and analogy operations by the word-vector estimated with the statistical SVD or deep-learning CBOW and LSTM methods.
Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color. shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.7
/
pp.816-822
/
2016
Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.