• Title/Summary/Keyword: 이미지유사도

Search Result 881, Processing Time 0.03 seconds

A study on searching image by cluster indexing and sequential I/O (연속적 I/O와 클러스터 인덱싱 구조를 이용한 이미지 데이타 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.779-788
    • /
    • 2002
  • There are many technically difficult issues in searching multimedia data such as image, video and audio because they are massive and more complex than simple text-based data. As a method of searching multimedia data, a similarity retrieval has been studied to retrieve automatically basic features of multimedia data and to make a search among data with retrieved features because exact match is not adaptable to a matrix of features of multimedia. In this paper, data clustering and its indexing are proposed as a speedy similarity-retrieval method of multimedia data. This approach clusters similar images on adjacent disk cylinders and then builds Indexes to access the clusters. To minimize the search cost, the hashing is adapted to index cluster. In addition, to reduce I/O time, the proposed searching takes just one I/O to look up the location of the cluster containing similar object and one sequential file I/O to read in this cluster. The proposed schema solves the problem of multi-dimension by using clustering and its indexing and has higher search efficiency than the content-based image retrieval that uses only clustering or indexing structure.

A Grid-based Matching Algorithm for Improving Response Time in Image Database (이미지 데이터베이스에서의 응답 시간 향상을 위한 그리드 기반 매칭 기법)

  • Nam, Yun-Young;Park, Jin-Kyu;Hwang, Een-Jun;Wee, Young-Cheul;Kim, Dong-Yoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.283-286
    • /
    • 2006
  • 내용기반의 이미지 검색방법은 객체의 내부의 정보를 이용한 검색방법으로 색상, 모양, 질감과 같은 특징을 사용한다. 이러한 특징 중에 모양은 검색에 사용될 수 있는 점을 추출하여 유사도 계산에 사용한다. 유사도 계산은 점의 개수가 증가할수록 검색의 응답시간도 함께 증가한다는 문제점이 있다. 본 논문은 응답시간 향상을 위하여 특징점들에 대한 그리드 기반의 유사도 매칭 기법을 제안한다. 그리드 기반의 유사도 매칭 기법은 점들을 그리드로 나누어 검색의 범위를 좁힘으로써 매칭하는 횟수를 줄이는 방법이다. 특징점으로 사용된 점들은 이미지의 선으로부터 MPP(Minimum Perimeter Polygons) 알고리즘으로 추출하였으며, 특징 점들간의 거리값의 합을 유사도로 계산하였다. 실험에서는 400여개의 식물 잎 이미지로부터 점들을 추출하여 검색 시간을 비교하였다.

  • PDF

Binary Conversion and Similarity Check for Shape feature Information based Image Retrieval (모양 특징정보 기반 이미지 검색을 위한 이진 영상 변환 및 유사도 검색)

  • 김주연;김진천
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.375-378
    • /
    • 2003
  • 본 논문에서는 공간적 정보로 이미지검색을 하는 모양 특징정보 기반 이미지 검색 시스템에서 검색효율을 향상 시킬 수 있는 이진 영상 변환 및 유사도 검색에 대한 기법을 제안하였다. 모양특징정보의 좀더 정확한 값의 추출을 위해 이미지의 잡음이 윤곽선으로 인식되는 값이 최소화 될 수 있도록 하는 이진 영상 변환방법을 제안하였으며, 유사도 검색에서는 영역별 특징정보 간의 비교와 병행하여 영역을 다시 소그룹화한 다음 소그룹간의 평균 유사도 값의 비교방법을 적용하였다. 성능 평가를 통하여 제안된 이진 영상 변환 겐 유사도 검색 방법을 사용한 경우 기존의 방법보다 향상된 검색 효율성을 보임을 알 수 있었다.

  • PDF

Web Image Caption Extraction using Positional Relation and Lexical Similarity (위치적 연관성과 어휘적 유사성을 이용한 웹 이미지 캡션 추출)

  • Lee, Hyoung-Gyu;Kim, Min-Jeong;Hong, Gum-Won;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.335-345
    • /
    • 2009
  • In this paper, we propose a new web image caption extraction method considering the positional relation between a caption and an image and the lexical similarity between a caption and the main text containing the caption. The positional relation between a caption and an image represents how the caption is located with respect to the distance and the direction of the corresponding image. The lexical similarity between a caption and the main text indicates how likely the main text generates the caption of the image. Compared with previous image caption extraction approaches which only utilize the independent features of image and captions, the proposed approach can improve caption extraction recall rate, precision rate and 28% F-measure by including additional features of positional relation and lexical similarity.

Concept based Image Retrieval Using Similarity Measurement Between Concepts (개념간 유사성 측정을 이용한 개념 기반 이미지 검색)

  • 조미영;최춘호;신주현;김판구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.253-255
    • /
    • 2003
  • 기존의 개념 기반 이미지 검색에서는 이미지의 의미적 내용 인식을 위해 일반적으로 어휘적 정보나 텍스트 정보를 이용했다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사용하여 쉽게 구현할 수 있으나 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석처리된 단어와 정확한 매칭이 없다면 찾을 수가 없었다. 이에 본 논문에서는 ontology의 일종인 WordNet을 이용하여 깊이 정보량 링크 타입, 밀도 등을 고려한 개념간 유사성 측정으로 패턴 매칭의 문제를 해결하고자 했다. 또한 키워드로 주석처리 되어 있는 Microsofts Design Gallery Live의 이미지를 이용하여 개념간 유사성 측정법을 실질적으로 개념 기반 이미지 검색에 적용해 보았다.

  • PDF

Personalized Hybrid Outfit Recommendation Based on Image Dissimilarity (이미지 비유사도 기반의 개인화된 하이브리드 의류 추천 모델)

  • Jeong-Won Yang;Ji-Hye Baek;Hyon-Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.459-460
    • /
    • 2023
  • 기존의 추천시스템은 상품간 혹은 사용자 간의 유사도를 기반으로 작동한다. 하지만 이는 사용자가 유사한 상품 추천 속에 갇히게 되는 필터 버블의 문제와 추천시스템의 고질적인 문제인 데이터 희소성 문제를 피할 수 없게 된다. 따라서 본 연구에서는 사용자의 취향과 체형 정보를 반영하여 사용자의 평점을 예측하는 협업 필터링 기반 딥러닝 추천과 상품간 비유사성을 고려하여 사용자의 평점을 예측하는 내용 기반 추천을 혼합한 하이브리드 추천 모델을 구축하여 기존 추천시스템의 문제점을 해결하였다. 모델의 성능평가를 위해 인터넷 의류 쇼핑몰을 대상으로 유사한 이미지를 활용한 하이브리드 추천 모델과 NDCG 값을 비교하였고 유사도가 낮은 이미지를 활용한 모델이 더 우수한 성능을 보였다. 이는 다른 제품과는 달리 소비자가 의류를 구매할 경우 이미 구매한 상품과 유사한 상품보다는 유사하지 않은 상품을 구매할 가능성이 크다는 것을 보여준다.

Image Search System Based on Object Detection Algorithm (객체 탐지 알고리즘 기반 이미지 검색 시스템)

  • Ji-Hyun Ahn;Seungmin Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.685-687
    • /
    • 2023
  • 최근에 이르러 인공신경망의 발전은 CNN(Convolutional Neural Network) 알고리즘을 활용한 이미지 분석 및 검색 시스템에 비약적인 기여를 하고 있다. 이는 이미지를 입력으로 받아 유사한 이미지를 찾아내는 기능을 향상시키는 연구를 촉진시켰다. 이와 같은 기술의 실용화는 다양한 분야를 포괄하며, 대표적으로 쇼핑몰의 상품검색, 검색 엔진 등에 응용되어 사용자의 편의를 제고하고 있다. 이에 따라 상품명에 대한 정보가 없는 상황에서도 단순한 이미지 정보를 통해 원하는 상품을 검색하는 것이 가능해졌다. 그러나, 실제 세계의 이미지에는 다양한 객체들이 복잡하게 혼재하고 있어 CNN 알고리즘 단독으로는 이미지 내부의 객체를 정확히 분석하고, 그 객체가 포함된 다른 이미지들을 효과적으로 검색하는데 한계가 있음이 인지되고 있다. 본 연구는 이러한 문제점을 개선하기 위해 객체 탐지 알고리즘을 적용하는 방안을 모색하였다. 본 논문에서는 객체 탐지 알고리즘을 통해 이미지 내부의 객체를 분석하고, 그에 따른 유사 객체를 포함하는 이미지를 찾아내는 전략을 제시한다. 이를 통해 이미지 분석 및 검색의 정확성을 더욱 향상시킬 수 있는 가능성을 제안한다.

  • PDF

The Similarity of the Image Comparison System utilizing OpenCV (OpenCV를 활용한 이미지 유사성 비교 시스템)

  • Ban, Tae-Hak;Bang, Jin-Suk;Yuk, Jung-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.834-835
    • /
    • 2016
  • In recent years, advances in technology, IT is rapidly growing. Accordingly, real time image processing and multiple platforms, providing compatibility with OpenCV for image processing technology research on actively in progress. At present, different, comparing the images to determine the similarity is low, the system will match the rate of people using the analogue figures to determine the system is for the most part. In this paper, Template Matching of OpenCV and Feature Matching utilizing different images to determine the similarity between digital values for the system. A comparison of the features of a specific point on the screen the image to extract the same feature in a different size, you can compare the features of the target image recognized as compared to three historic castle in comparison, verification. This is the voice and image recognition and analysis, check the matching rate readings than in Zhengzhou treatment techniques are available. The future of forensic and other image processing technologies for OpenCV studies will be needed to feed.

  • PDF

Research on Similar Clothing Recommendation Through Image Analysis (이미지 분석을 통한 유사 의류 추천 연구 )

  • Yun-Seo Kim;So-Min Yoon;Sun-Young Ihm
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.752-753
    • /
    • 2024
  • 의류 추천 과정에서 유사 이미지 검색 기능의 역할과 그 효과를 분석하는 데 목적을 두고 있다. 의류 추천 기능은 기존의 유사한 상품 검색 기능의 한계를 보완하며, 의류 플랫폼에서 맞춤형 검색 결과를 제공하는 데 기여한다. 이미지 인식 기술과 딥러닝 알고리즘을 활용하여 사용자의 의도를 파악하고, 상의와 하의를 개별적으로 인식하여 추천하는 방식으로 기존 의류 추천 시스템과 차별화되며, 사용자에게 최적화된 스타일 조합이 될 것으로 기대된다.

Study on the Correlation between Digital Images using ICOR (이미지 상관관계함수를 이용한 디지털 영상의 유사도 비교에 관한 연구)

  • Yang, Hyung-Kyu;Choi, Jong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.75-82
    • /
    • 2009
  • The comparison of images uses PSNR generally. In the case that PSNR value is above 35, it is hard to distinguish the quality of images. In 2006 Lee has proposed the protocol to be able to prove ownership of image using publishing MSB bit strings of original image instead of original images and used the new function to measure correlation of MSB bit strings of two images. In the view of measuring the quality of images, correlation is a bit different from PSNR. That is, if an object image to gene ate from an original image has lower quality, PSNR has very low value, but though the quality is bad, correlation of the images is very high in the view of similarity. In this paper, we modify MSB comparison function that LEE suggested and propose the ICOR function, then analyze the possibility to decide correlation of two images.