• Title/Summary/Keyword: 이러닝 사용자 만족

Search Result 27, Processing Time 0.02 seconds

An Exploratory Study on the Effects of Mobile Proptech Application Quality Factors on the User Satisfaction, Intention of Continuous Use, and Words-of-Mouth (모바일 부동산중개 애플리케이션의 품질요인이 사용자 만족, 지속적 사용 및 구전의도에 미치는 영향)

  • Jaeyoung Kim;Horim Kim
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.15-30
    • /
    • 2020
  • In the real estate industry, the latest changes in the Fourth Industrial Revolution, such as big data analytics, machine learning, and VR (virtual reality), combine to bring about industry change. Proptech is a new term combining properties and technology. This study aims to derive and analyze from a comprehensive perspective the quality factors (systems, services, interfaces, information) for mobile real estate brokerage services that are well known and used in the domestic market. The surveys in this study were conducted online and offline and a total of 161 samples were used for statistical analysis. As a result, all hypotheses were approved to except system quality and service quality. The results show that the domestic proptech companies who are mostly focused on real estate brokerage services, peer-to-peer lending, advertising platforms and apartments need to grow in various fields of proptech business of other countries including Europe, USA and China.

Design and implementation of a satisfaction and category classifier for game reviews based on deep learning (딥러닝 기반 게임 리뷰 만족도 및 카테고리 분류 시스템 설계 및 개발)

  • Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.729-732
    • /
    • 2018
  • 모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.

IT Convergence u-Learning Contents using Agent Based Modeling (에이전트 기반 모델링을 활용한 IT 융합 u-러닝 콘텐츠)

  • Park, Hong-Joon;Kim, Jin-Young;Jun, Young-Cook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.513-521
    • /
    • 2014
  • The purpose of this research is to develope and implement a convergent educational contents based on theoretical background of integrated education using agent based modeling in the ubiquitous learning environment. The structure of this contents consists of three modules that were designed by trans-disciplinary concept and situated learning theory. These three modules are: convergent problem presenting module, resource of knowledge module and learning of agent based modeling and IT tools module. After the satisfaction survey of the implemented content, out of 5 total value, the average value was 3.86 for effectiveness, 4.13 for convenience and 3.86 for design. The result of the survey shows that the users are generally satisfied. By using this u-learning contents, learners can experience and learn how to solve the convergent problem by utilizing IT tools without any limitation of device, time and space. At the same time, the proposal of structural design of contents can be a good guideline to the researchers to develop the convergent educational contents in the future.

Grouping System for e-Learning Community(GSE): based on Intelligent Personalized Agent (온라인 학습공동체 그룹핑 시스템 개발: 지능적 에이전트 활용)

  • Kim, Myung Sook;Cho, Young Im
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.6
    • /
    • pp.117-128
    • /
    • 2004
  • Compared with traditional face-to-face instruction, online learning causes learners to experience more severe feeling of isolation and results in higher dropout rate. This is due to the lack of interaction, sense of belonging, membership, interdependency, cooperation among members and social environment that enables persistence in online learning. Therefore, it is very important for grouping e-learning community to lower the dropout rate and eliminate feeling of isolation. In this paper, the research has been done on the inclination test list to be applied for grouping the desirable learning community. And on the basis of this research, the grouping system for e-learning community(GSE) based on intelligent multi agents for an inclination test using homogeneous and heterogeneous items has been developed. GSE system has such properties that construct a personalized user profile by an agent, and then make groupings according to users' inclination. When this system was evaluated, about 88% of learners were satisfied, and they wanted the group not to be disorganized but to be maintained.

  • PDF

Inclusion Polymorphism과 UML 클래스 다이어그램 구조에 의거한 디자인패턴 해석

  • Lee, Rang-Hyeok;Lee, Hyeon-Woo;Go, Seok-Ha
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.55-68
    • /
    • 2007
  • 디자인 패턴은 새롭게 만들어 지는 것이 아니라 기존의 검증된 지식, 관용법, 원칙들을 체계화한 것이다. 다시 말하면 디자인 패턴은 특정한 문제를 해결하기 위한, 검증된 설계 방법에 이름을 붙인 것이다. 그러므로 적절한 디자인 패턴 사용은 1) 개발자들간의 원활한 의사소통에 도움을 주며, 2) 하급자가 고급기술을 쉽게 익힐 수 있도록 할 수 있다. 3) 또한 사용된 디자인이나 아키텍처를 재사용할 수 있도록 하고, 4) 만들어진 시스템의 유지 보수를 보다 쉽게 할 수 있는 등의 장점을 얻을 수 있다. 반면에 필요하지 않은 곳에 까지 디자인패턴을 사용하게 되면 소프트웨어를 복잡하고, 유지보수도 어렵게 만들 수 있다. 디자인 패턴의 분류는 수 많은 패턴을 비슷한 속성을 지닌 그룹들로 조직화 하는 것이다. 이는 개발자가 특정 문제에 맞는 디자인 패턴을 쉽게 선택 할 수 있도록 도와 줄 뿐만 아니라, 디자인 패턴의 주요특성을 빠르게 이해하고 간파 할 수 있게 한다. 그래서 Beck 이 디자인패턴을 소개한 이후 GoF, Buschmann, Grand, Antoy 등은 디자인 패턴을 단순히 열거를 통해 소개하지 않고, 각자의 기준에 따라 체계적으로 분류하여 패턴을 설명 하고 있다. 본 연구는 객체지향 설계의 근본 개념인 Polymorphism (Inclusion Polymorphism) 과 '객체 지향 소프트웨어 설계 원칙' 그리고 이 근본 원칙들이 UML 클래스 다이어그램에 나타나는 구조적 특정에 의거해 디자인 패 턴 해석을 수행 하였다. 본 연구의 목적은 1) 객체지향의 근본 원칙으로 표현 되는 패턴과 2) 설계자의 전문적 인 Art를 포함하고 있는 패턴으로 분류하는데 있다.3: 재미는 용이성을 통해 채택의도에 정의 영향을 미친다. 가설4: 유용성은 채택의도에 정의 영향을 미친다. 가설5: 용이성은 채택의도에 정의 영향을 미친다. 가설6: 용이성은 유용성에 정의 영향을 미친다. 본 연구의 대상은 자발적으로 이러닝을 채택할 수 있는 대학생을 대상으로 하였고, 설문 데이터 분석을 통한 실증연구를 수행하였다. 분석방법으로는 PLS 분석도구를 사용하였다. 분석결과 가설6을 제외하고는 모두 유용한 것으로 입증되었다.97)은 배움의 용이성, 기억의 용이성, 오류, 효율성, 만족성으로 분류하고 있고(Nielsen, 1997), Shneiderman(1998)는 효과성(직무시간, 배움의 시간), 효율성(기억의 지속시간, 오류), 만족도를 품질의 특성으로 분류하였다. 이와 같은 소프트웨어의 품질은 소프트웨어 계획, 개발, 성장과 쇠퇴의 모든 과정에 적용되며, 환경적 변화에 따라 사용자들의 정보욕구를 적절하게 반영하여 만족도를 높이 는 것이라고 요약할 수 있다. 그러나 현재까지 소프트웨어 품질 평가에 대한 연구들 은 보편적인 평가 항목들을 대상으로 측정하여 일반적인 품질기준을 제시하고 있고, 유사한 측정 내용들이 중복되어 있다. 이러한 경향은 산업별 특수성이 강한 소프트웨어에 대해서는 정확한 품질측정이 어려웠고, 품질측정에 대한 신뢰성을 떨어뜨리는 계기가 되었다. 이러한 한계를 극복하고자 나타난 방법론이 최종사용자들의 요구사항을 얼마나 적절하게 시스템에 반영했는지에 대한 사용성(Usability) 측정이다. 사용성에 대한 정의는 사용자들이 실질적으로 일하는 장소에서 직접 사용자들의 시스템 운용실태를 파악하여 문제점을 개선하는 것으로 요약할 수 있다. ISO9124-1

  • PDF

A Study on Smartphone Use by Korean Adult ELT Learners (한국 성인 영어 학습자의 스마트폰 활용 연구)

  • Kim, Youngwoo
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.21-32
    • /
    • 2014
  • Recently, the number of Koreans who use smartphones has increased drastically; many use smartphones to learn English. In this study, one hundred Korean adult ELT (English language teaching) learners were surveyed to investigate their use of smartphones and factors influencing such use. For comparison, sixty-two students of a Korean cyber university were surveyed; these students were able to study using their smartphones in a smart campus environment. The research results showed that both groups positively used smartphones frequently, and that many intended to continue using them. With regard to ELT, both groups intended to learn English using their smartphones. Furthermore, they preferred certain types of ELT content: thirty-minute or less learning sessions, receptive English skills that focused on listening and reading, and short units of framed language items such as pronunciation and vocabulary. However, few of the respondents in both groups installed ELT apps on their smartphones, and few of the ELT apps satisfied them. The cyber university students responded similarly about smartphone use, although their responses regarding smartphone use for ELT purposes were less positive. These results indicate that the goal of cyber universities in achieving optimum learning outcomes through smart learning and the smart campus has not yet been realized.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.