U-러닝이라고 하는 새로운 패러다임이 교육 현장에도 적용되고 있다. 그렇지만 유비쿼터스 학습에 대한 충분한 선행연구나 지원 콘텐츠의 개발이 이루어 지지 않는 상태에서 u-러닝을 구현하기에는 많은 어려움이 따른다. 이에 본 연구에서는 먼저 교사, 학부모의 u-러닝과 RFID에 대한 인식 상태 조사, 그리고 출결관리 시스템을 개발하여 학생들에게 적용하여 봄으로써 미래 교육의 바람직한 모델을 제시하고자 하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.331-333
/
2015
본 논문에서는 최근에 외국어로서의 한국어 학습 수요가 증가하고 있는 현실을 반영하여, 한국어를 외국어로 사용하는 한국어 수요자의 접근성을 고려한 초보적인 한국어 읽기 학습을 지원하는 학습지원 시스템을 설계하여 제시한다. 우리나라는 경제개발에 성공하고 주요 기간산업에서 세계적인 기업이 탄생하여 세계적으로 관심을 끌고 있다. 이런 현상에 따라서 결혼 이민자는 물론 국내 산업체에 취업하기 위해 입국하는 동남아시아를 중심으로 하는 근로자는 물론 첨단산업에 종사하기 위해 고학력의 외국인들이 많이 입국하고 있으며, k-pop을 비롯한 '한류'에 대한 관심이 고조되어, 다양한 국가의 다양한 계층에서 한국어에 대한 관심이 증가하고 있다. 이와 같은 현실에 비하여 특히 경제력과 학습수준이 낮은 외국인들은 정규적인 교육의 기회를 갖지 못하게 되어 여러 가지의 문제를 야기하고 있다. 이런 현실을 반영하여 초보적인 한국어 학습, 특히 읽기 학습을 지원하는 한국어 이러닝 시스템을 설계하여 제시하였다.
Journal of the Institute of Electronics and Information Engineers
/
v.49
no.9
/
pp.370-378
/
2012
This paper proposes a method of constructing of hybrid web-based smart learning system to operable in a variety of mobile devices. To do this, the proposed system is developed a learning system with standardized and enhanced functions. In the proposed method, API specifications based on the standard functionality of smart learning system are created. And then, by building the API provider on a legacy system an organic linkage between the legacy system and the smart learning system is guaranteed. A standard API method is applied to data integration between the PC-based learning system and the smart learning system. The smart learning system interacts with legacy learning systems though Json/XML data forms via the https protocol. As a result, the legacy system using the proposed method dose not require major modifications and changes for a smart learning service.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.1
/
pp.92-98
/
2019
In this paper, we propose a deep learning system based on morphological neural network(MNN). The deep learning layers are morphological operation layer, pooling layer, ReLU layer, and the fully connected layer. The operations used in morphological layer are erosion, dilation, and edge detection, etc. Unlike CNN, the number of hidden layers and kernels applied to each layer is limited in MNN. Because of the reduction of processing time and utility of VLSI chip design, it is possible to apply MNN to various mobile embedded systems. MNN performs the edge and shape detection operations with a limited number of kernels. Through experiments using database images, it is confirmed that MNN can be used as a deep learning system and its performance.
최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.07a
/
pp.224-225
/
2015
IT를 기반으로 한 플립러닝(Flipped Learning-온라인으로 선행학습을 한 뒤에 오프라인 수업을 통해 교사와 학생이 토론식으로 진행하는 수업방식) 학습법은 교수자가 아닌 학습자의 요구에 적극 부응할 수 있는 제도이다. 전공 수업뿐만 아니라 교양 수업에도 이에 대한 적극적인 도입이 필요하다. 본 논문에서는 대학 글쓰기 수업에 있어서 플립러닝 학습법을 적용한 사례를 통해 이를 입증하고자 하였다.
This study was to analysis perception about Teaching & Learning Support System of the school of Rural Areas in Korea. In order to accomplish the study purpose, the study conducted a research through Web Survey method and examined their recognition. Major findings of this study were as follows: First, Student was satisfied with TLSS of the school of Rural Areas in Korea. Students would like to 'using e-learning with Electronic board and Tablet PC' among program contents. But the system' utilization was low. However, 90% of the students wanted that teacher usually using the FASTEL. Second, Teacher satisfaction was lower compared to the students is relatively. Teachers prefer 'various after school program' to 'using e-learning with Electronic board and Tablet PC'. However, learning effective of using FASTEL system was a 73.8% of teachers are effective is aware and had. Third, 35% Students recognized that are using the pastel system, frequently, On the other hand, the teachers are 60% and to recognize that there was. The reason doesn't the system to good use is slow wireless. Still, e-learning classroom infrastructure for satisfaction was high. Fourth, Teachers recognized students and the pastel system interaction than other e-learning system high. FASTEL System used in the most uncomfortable things on e-learning classroom Wireless Internet phenomena and lost content lacking, in order, I was told. Therefore, there is an urgent need to improve to include Wireless Internet speed improvements and various content added support, easy-to-use instructional tools Add support order selected.
Seo, Deck-Won;Yooun, Ho-sang;Shin, Dong-Il;Shin, Dong-Kyoo
Annual Conference of KIPS
/
2017.11a
/
pp.299-301
/
2017
현대사회에서는 사이버 해킹 공격이 많이 일어나고 있다. 공격이 증가함에 따라 이를 다양한 방법으로 방어하고 탐지하는 연구가 많이 이루어지고 있다. 본 논문은 OpenIOC, STIX, MMDEF 등과 같은 공격자의 방법론 또는 증거를 식별하는 기술 특성 설명을 수집해 놓은 표현들을 기반을 머신러닝과 logstash라는 로그 수집기를 결합하는 새로운 시스템을 제안한다. 시스템은 pc에 공격이 가해졌을 때 로그 수집기를 사용하여 로그를 수집한 후에 로그의 속성 값들의 리스트를 가지고 머신러닝 알고리즘을 통해 학습시켜 분석을 진행한다. 향후에는 제안된 시스템을 실시간 처리 머신러닝 알고리즘을 사용하여 필요로그정보의 구성을 해주면 자동으로 로그정보를 수집하고 필터와 출력을 거쳐 학습을 시켜 자동 침입탐지시스템으로 발전할 수 있을 것이라 예상된다.
여러 분야에서 각광받는 딥러닝은 학습시간이 오래 걸리고, 고가의 장비들이 요구된다. 이러한 이유로 저사양 머신들을 이용한 분산 러닝 시스템들이 연구되기 시작했다. 본 논문은 " PSO 알고리즘을 이용한 분산 딥러닝 시스템" 을 개선했고, 그 결과 개선한 시스템의 머신 개수가 1 대 일 때 정확도가 92.8%까지 향상되었고, 머신 개수가 10 대 일 때 정확도가 93.4%까지 향상되었다. 이를 기반으로 저사양의 머신들을 결합한 분산 러닝 시스템이 고가의 장비를 사용하지 않고도 좋은 결과를 얻을 수 있다는 것을 확인했다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.172-172
/
2022
분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.