최근 임베디드 엣지 컴퓨팅 디바이스에서 AI와 같은 인공지은 연산을 수행하여 AI 추론 연산의 가속화 및 분산화가 많이 이루어지고 있다. 엣지 디바이스는 임베디드 프로세서를 기반으로 AI의 가속 연산을 위해서 내부에 딥러닝 가속기를 포함하여 가속화시키는 시스템 구성을 하고 있다. 딥러닝 가속기는 복잡한 Neural Network 연산을 위한 데이터 이동이 많으며 외부 메모리와 내부 딥러닝 가속기간의 효율적인 데이터 이동 및 버퍼링이 필요하다. 본 연구에서는 엣지 디바이스 딥러닝 가속기 내부의 버퍼 구조를 모델링하고, 버퍼의 크기에 따른 버퍼링 효과를 분석해 보았다. 딥러닝 가속기 버퍼 구조는 RISC-V 프로세서 기반 가상 플랫폼에 구현되었다. 이를 통해서 딥러닝 모델에 따른 딥러닝 가속기 버퍼의 사용성을 분석할 수 있다.
E-learning has improved the educational effect by making it possible to learn anytime and anywhere by escaping the traditional infusion education. As the use of e-learning system increases with the increasing popularity of e-learning, it has become important to measure e-learning satisfaction. In this study, we used the mixed research method to identify satisfaction factors of e-learning. The mixed research method is to perform both qualitative research and quantitative research at the same time. As a quantitative research, we collected reviews in Udemy.com by text mining. Then we classified high and low rated lectures and applied topic modeling technique to derive factors from reviews. Also, this study conducted an in-depth 1:1 interview on e-learning learners as a qualitative research. By combining these results, we were able to derive factors of e-learning satisfaction and dissatisfaction. Based on these factors, we suggested ways to improve e-learning satisfaction. In contrast to the fact that survey-based research was mainly conducted in the past, this study collects actual data by text mining. The academic significance of this study is that the results of the topic modeling are combined with the factor based on the information system success model.
본 논문은 도로에서의 객체탐지를 위한 딥러닝(deep learning) 데이터셋을 자동으로 생성, 분류하는 시스템을 제안한다. 시스템의 작동 과정은 크게 두 가지이다. 먼저 딥러닝을 활용하여 촬영된 영상에 존재하는 객체를 검출한다. 이때, 실시간으로 하는 방법과 레코딩된 영상을 다루는 방법 두 가지가 있다. 다음으로 검출된 객체 중 예측 값(scroe)가 임계치 이상인 객체의 위치와 종류를 파일로 저장한다. 이 시스템은 차량 전방 카메라 위치에 장착된 웹캠을 이용해 영상을 취득하고 임베디드 보드인 TX2 board를 이용해 데이터 셋을 생성한다. 매트랩의 image labeler app과 비교를 통해 보다 적은 시간비용으로 데이터셋을 생성해 냄을 확인하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.280-283
/
2019
공손함은 인간 언어의 가장 흥미로운 특징 중 하나이며, 자연어처리 시스템이 인간과 자연스럽게 대화하기 위해 필수적으로 모델링해야 할 요소이다. 본 연구에서는 인간의 발화가 주어졌을 때, 이의 공손함을 판단할 수 있는 시스템을 구현한다. 이를 위해 딥러닝 방법인 양방향 LSTM 모델과, 최근 자연어처리 분야에서 각광받고 있는 BERT 모델에 대해 성능 비교를 수행하였다. 이 두 기술은 모두 문맥 정보를 반영할 수 있는 모델로서, 같은 단어라도 문맥 정보에 따라 의미가 달라질 수 있는 공손함의 미묘한 차이를 반영할 수 있다. 실험 결과, 여러 설정에 거쳐 BERT 모델이 양방향 LSTM 모델보다 더 우수함을 확인하였다. 또한, 발화가 구어체보다 문어체에 가까울 수록 딥러닝 모델의 성능이 더 좋은 것으로 나타났다. 제안된 두 가지 방법의 성능을 인간의 판단 능력과 비교해본 결과, 위키피디아 도메인에서 BERT 모델이 91.71%의 성능을 보여 인간의 정확도인 86.72%를 상회함을 확인하였다.
In this paper, we propose a deep learning structure suitable for embedded system. The flame detection process of the proposed deep learning structure consists of four steps : flame area detection using flame color model, flame image classification using deep learning structure for flame color specialization, $N{\times}N$ cell separation in detected flame area, flame image classification using deep learning structure for flame shape specialization. First, only the color of the flame is extracted from the input image and then labeled to detect the flame area. Second, area of flame detected is the input of a deep learning structure specialized in flame color and is classified as flame image only if the probability of flame class at the output is greater than 75%. Third, divide the detected flame region of the images classified as flame images less than 75% in the preceding section into $N{\times}N$ units. Fourthly, small cells divided into $N{\times}N$ units are inserted into the input of a deep learning structure specialized to the shape of the flame and each cell is judged to be flame proof and classified as flame images if more than 50% of cells are classified as flame images. To verify the effectiveness of the proposed deep learning structure, we experimented with a flame database of ImageNet. Experimental results show that the proposed deep learning structure has an average resource occupancy rate of 29.86% and an 8 second fast flame detection time. The flame detection rate averaged 0.95% lower compared to the existing deep learning structure, but this was the result of light construction of the deep learning structure for application to embedded systems. Therefore, the deep learning structure for flame detection proposed in this paper has been proved suitable for the application of embedded system.
Journal of the Korea Society of Computer and Information
/
v.15
no.2
/
pp.135-146
/
2010
In this paper, we propose an Recommendation System for supporting self-directed learning on e-learning marketplace. The key idea of this system is recommendation system using revised collaborative filtering to support marketplace. Exisiting collaborative filtering method consists of 3 stages as preparing low data, building familiar customer group by selecting nearest neighbor, creating recommendation list. This study designs recommendation system to support self-directed learning by using collaborative filtering added nearest neighbor learning course that considered industry and learning level. This service helps to select right learning course to learner in industry. Recommendation System can be built by many method and to recommend the service content including explicit properties using revised collaborative filtering method can solve limitations in existing content recommendation.
Ok-Kyoon Ha;Jin-chan Kim;Yong-jin Kim;Yong-hun Ok;Dong-hun Na;Uk-ryeol Lee
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.41-42
/
2023
인구 밀집도가 높은 곳에서의 안전사고 대응과 이에 대한 예방을 위한 기술 및 해결 방안의 필요성이 증가하고 있다. 이를 위한 기존의 기술들은 지능형 CCTV 기반의 경고 알림을 울리는 방식과 스마트폰의 신호를 수집하여 유동인구를 측정하는 기술 등이 사용되고 있다. 그러나 군중 밀집 사고의 원인인 병목현상과 군중 난류 현상까지 대응하지는 못하는 문제점이 있다. 본 논문에서는 CCTV로부터 수집된 영상 정보만으로 딥러닝 영상인식 기술을 이용하여 병목현상이 일어나기 쉬운 출입구의 유·출입 인구 카운팅과 광장의 밀집도 분석을 디지털 트윈 기반으로 실시하고 이를 통해 위험 상황 발생 시 출입구의 통제와 대피를 위한 안내가 가능한 시스템을 제시한다. 제시하는 시스템은 유동 인구가 많고 인구의 급격한 밀집으로 인해 발생할 수 있는 안전사고의 예방과 이를 해결하기 위한 통제 및 안내를 위한 대처 방법으로 활용할 수 있다.
Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.4
/
pp.150-158
/
2018
In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.
This study aims to explore key factors which influence user's decision-making on the adoption of e-learning. We integrated UTAUT and Information Success Models to test that four independent factors affect student satisfaction to use e-learning in Rwanda's higher education. Data was collected by surveying students of University of Rwanda and Protestant Institute of Social Sciences (n=206). The analysis results showed that performance expectancy, facilitating conditions and effort expectancy except for social influence have a significant effect on students' satisfaction. This can help university administrators understand the factors that influence students' adoption of e-learning and incorporate these results into Rwanda's e-learning design and implementation. In final, Rwanda's government can contribute to establishing the e-learning policy and allocating its relevant resources centered on student needs.
Proceedings of the Korean Society of Computer Information Conference
/
2018.01a
/
pp.7-8
/
2018
본 논문에서는 CNN 기반의 소음을 이용한 원동 구동장치 진단시스템(PHM)을 제안한다. 이 시스템은 구동장치로부터 발생된 소리로부터 특징데이터를 추출하여 이를 학습한 후 실시간으로 구동장치의 상태를 진단하는 것을 목적으로 하며, 딥러닝 기술을 이용하여 특정 장치에 종속되지 않고 학습할 데이터에 따라 적용 대상이 쉽게 가변 할 수 있도록 설계하였다. 본 논문에서는 실제 적용될 현장에서 발생할 수 있는 예측외의 소음환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 제안된 시스템과 이전 연구에서 제안된 DNN 기반의 기계진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 소음환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.