• Title/Summary/Keyword: 이동최소자승

Search Result 125, Processing Time 0.029 seconds

Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow (자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발)

  • Nam, Jung-Woo;Park, Jong-Chun;Park, Ji-In;Hwang, Sung-Chul;Heo, Jae-Kyung;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

Measurements on the Propagation Path Loss Exponent at Maritime VHF Channel Using Single Carrier Signal (단일 반송파를 이용한 해상 VHF 채널의 전파 경로 감쇠 지수 측정)

  • Kim, Seung-Geun;Kim, Sea-Moon;Yun, Changho;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1450-1456
    • /
    • 2015
  • The received signal strengths according to the propagation distance between a transmitting shore station with a 53 m antenna hight and a receiving ship station with about 6m antenna hight from 700 m upto about 20 km are measured at ship's moving velocity of $5{\pm}1m/s$ using a single carrier signal at 150.0625MHz. In this paper, the path loss exponents at the propagation distance from 700 m to 20km are estimated via minimum-mean-square-error method using the measurements of the received signal strength, and the mean of the estimated path loss exponent become 3.79. The estimated propagation path loss exponents is similar to that calculated based on the field-strength values from 2 km to 20 km in Annex 2 of ITU-R P.1546-4, which is measuring results at maritime VHF at 100 MHz carrier frequency. Therefore, the estimated propagation path loss exponent shall be used as the expected path loss exponents for summer in costal area of South Sea of Korea.

Nonlinear Inference Using Fuzzy Cluster (퍼지 클러스터를 이용한 비선형 추론)

  • Park, Keon-Jung;Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2016
  • In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

Evaluation of Crack-tip Cohesive Laws for the Mode I Fracture of the Graphene from Molecular Dynamics Simulations (그래핀의 모드 I 균열에 대한 분자동역학 해석으로부터 균열 선단 응집 법칙의 평가)

  • Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.393-399
    • /
    • 2013
  • In this paper, a novel approach to estimate cohesive laws for the mode I fracture of the graphene is presented by combining molecular dynamic simulations and an inverse algorithm based on field projection method and finite element method. The determination of crack-tip cohesive laws of the graphene based on continuum mechanics is a non-trivial inverse problem of finding unknown tractions and separations from atomic simulations. The displacements of molecular dynamic simulations in a region far away from the crack tip are transferred to finite element nodes by using moving least square approximation. Inverse analyses for extracting unknown cohesive tractions and separation behind the crack tip can be carried out by using conservation nature of the interaction J- and M-integrals with numerical auxiliary fields which are generated by systematically imposing uniform surface tractions element-by-element along the crack surfaces in finite element models. The preset method can be a very successful approach to extract crack-tip cohesive laws from molecular dynamic simulations as a scale bridging method.

Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data (해양 자력구배 탐사자료를 이용한 UXO 탐지)

  • Salem Ahmed;Hamada Toshio;Asahina Joseph Kiyoshi;Ushijima Keisuke
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Recent development of marine magnetic gradient systems, using arrays of sensors, has made it possible to survey large contaminated areas very quickly. However, underwater Unexploded Ordnances (UXO) can be moved by water currents. Because of this mobility, the cleanup process in such situations becomes dynamic rather than static. This implies that detection should occur in near real-time for successful remediation. Therefore, there is a need for a fast interpretation method to rapidly detect signatures of underwater objects in marine magnetic data. In this paper, we present a fast method for location and characterization of underwater UXOs. The approach utilises gradient interpretation techniques (analytic signal and Euler methods) to locate the objects precisely. Then, using an iterative linear least-squares technique, we obtain the magnetization characteristics of the sources. The approach was applied to a theoretical marine magnetic anomaly, with random errors, over a known source. We demonstrate the practical utility of the method using marine magnetic gradient data from Japan.

Intra Prediction Method by Quadric Surface Modeling for Depth Video (깊이 영상의 이차 곡면 모델링을 통한 화면 내 예측 방법)

  • Lee, Dong-seok;Kwon, Soon-kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, we propose an intra-picture prediction method by a quadratic surface modeling method for depth video coding. The pixels of depth video are transformed to 3D coordinates using distance information. A quadratic surface with the smallest error is found by least square method for reference pixels. The reference pixel can be either the upper pixels or the left pixels. In the intra prediction using the quadratic surface, two predcition values are computed for one pixel. Two errors are computed as the square sums of differences between each prediction values and the pixel values of the reference pixels. The pixel sof the block are predicted by the reference pixels and prediction method that they have the lowest error. Comparing with the-state-of-art video coding method, simulation results show that the distortion and the bit rate are improved by up to 5.16% and 5.12%, respectively.

Real-time System Identification of Aircraft in Upset Condition Using Adaptive-order Zonotopic Kalman Filter (적응 차수 조노토픽 칼만 필터를 활용한 비정상 비행상태 항공기의 실시간 시스템 식별)

  • Gim, Seongmin;Harno, Hendra G.;Saderla, Subrahmanyam;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • It is essential to prevent LoC(Loss-of-Control) or upset situations caused by stall, icing or sensor malfunction in aircraft, because it may lead to the crash of the aircraft. With this regard, it is crucial to correctly identify the dynamic characteristics of aircraft in such upset conditions. In this paper, we present a SID(System IDentification) method utilizing the moving-window based least-square and the adaptive-order ZKF(Zonotopic Kalman Filter), which is more effective than the existing Kalman-filter based SID for the aircraft in upset condition at a high angle of attack with temporary sensor malfunction. The proposed method is then tested on real flight data and compared with the existing one.

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

A Study on the Intention to use Personal Mobility Services: Focused on the SOR(Stimulus-Organism-Response) Model (퍼스널 모빌리티 사용의도에 관한 연구: SOR(Stimulus-Organism-Response) 모델을 중심으로)

  • Wonguk Lee;Heetae Yang
    • Information Systems Review
    • /
    • v.24 no.2
    • /
    • pp.67-88
    • /
    • 2022
  • This study proposed a research model that can explain the usage intentions of users and non-users by considering the performance aspects of personal mobility and external environmental factors based on the SOR (Stimulus-Organism-Response) model, A survey was conducted targeting domestic users and non-users, and research models and hypotheses were verified through Partial Least Square (PLS) and Artificial Neural Network (ANN). As a result of the analysis, it was confirmed that the users' perceived satisfaction and perceived trust had a positive effect on their intention to use, and that perceived risk and environmental value had a significant relationship with perceived satisfaction and perceived trust. For non-users, it was found that there was a positive correlation between perceived satisfaction and intention to use, and it was verified that perceived risk and environmental value, like users, were significant antecedents of perceived satisfaction and perceived trust. Among the remaining variables, the perceived mobility of users and the perceived ease of use of non-users were respectively presented as important influencing factors on perceived satisfaction.