• Title/Summary/Keyword: 이동궤적

Search Result 499, Processing Time 0.027 seconds

The Parametrization and Structure Analysis for a Perspective Silhouette of a Canal Surface (Canal 곡면의 투시 윤곽곡선의 매개변수화 및 구조 분석)

  • Kim, Ku-Jin;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2001
  • We present an efficient and robust algorithm to parametrize a perspective silhouette curve of a canal surface. We also detect each connected component of the silhouette. A canal surface is an envelope surface of a moving sphere with varying radii, which is defined by the center trajectory C(t) and radius function r(t) of the moving sphere. A canal surface can be decomposed to a set of characteristic circles. We derive the equations for the silhouette points on each characteristic circle, then parameterize the silhouette curve by using the equation. The sphere $S(t_*)$ with center point $C(t_*)$ and radius $r(t_*)$ intersects with the canal surface at a characteristic circle $K(t_*)$. The perspective silhouette of the sphere $S(t_*)$ from given view point consists of a circle $Q(t_*)$. By finding the values of t at which K(t) and Q(t) tangentially intersect, we detect each connected component of the silhouette curve.

  • PDF

Optimizing Path Finding based on Dijkstra's Algorithm for a Quadruped Walking Robot TITAN-VIII (4족보행 로봇 TITAN-VIII의 Dijkstra's Algorithm을 이용한 최적경로 탐색)

  • Nguyen, Van Tien;Ahn, Byong-Won;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.574-584
    • /
    • 2017
  • In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than the Wheeled-robot's. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path, our approach is based on an algorithm which is called Dijkstra's algorithm. In the rest of paper, the various posture of the robot is discussed to keep the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of paper.

Entropy-based Dynamic Histogram for Spatio-temporal Databases (시공간 데이타베이스의 엔트로피 기반 동적 히스토그램)

  • 박현규;손진현;김명호
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relational database systems. However, in the spatio-temporal databases for the moving objects, the continual changes of the data distribution suffer the direct utilization of the state of the art histogram techniques. Specifically for the future queries, we need another methodology that considers the updated information and keeps the accuracy of the result. In this paper we propose a novel approach based upon the duality and the marginal distribution to construct a histogram with very little time since the spatio-temporal histogram requires the data distribution defined by query predicates. We use data synopsis method in the dual space to construct spatio-temporal histograms. Our method is robust to changing data distributions during a certain period of time while the objects keep the linear movements. An additional feature of our approach supports the dynamic update incrementally and maintains the accuracy of the estimated result.

Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept (反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃)

  • 정낙영;서일홍;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A collision-free trajectory planning algorithm using an iterative learning concept is proposed for dual robot arms in a 3-D common workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also that the operating time is near-minimal. To show the validity of the proposed algorithm, a numerical example is presented based on two planar robots.

Fractals in the Spreading of Drifters: Observation and Simulation (표류부표 분산의 프랙탈 성질: 관측 및 시뮬레이션)

  • KANG, YONG Q.;LEE, MOONJIN
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.392-401
    • /
    • 1994
  • We examined the temporal characteristics of the oceanic eddy diffusion at 5 coastal regions of Korea by measuring the separation distances of multiple drifters released simultaneously at the same by the GPS and Decca transponder system. The observed variance of separation distance, for the time scales from minutes to hours, is proportional to t/SUP m/ with scaling exponent m between 1.2 and 2.0. The observed Lagrangian trajectories of drifters show fractal characteristics instead of random walk or Brown motion. As an effort toward a development of a realistic model of the oceanic eddy diffusion, we simulated the Lagrangian trajectories of drifters by fractional Brown motion (FBM) model. The observed variances of drifter separations can be generated by the FBM process provided the Hurst exponent is the same as the observed one. We further showed that the observed power law in the variance of drifter separations cannot be simulated with an ordinary Brown motion or random walk process.

  • PDF

On Visualization of Trajectory Data for Traffic Flow Simulation of Urban-scale (도시 스케일의 교통 흐름 시뮬레이션을 위한 궤적 데이터 시각화)

  • Choi, Namshik;Onuean, Athita;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.582-585
    • /
    • 2018
  • As traffic volume increases and road networks become more complicated, identifying for accurate traffic flow and driving smooth traffic flow are a concern of many countries. There are various analytical techniques and studies which desire to study about effective traffic flow. However, the necessary activity is finding the traffic flow pattern through data visualization including location information. In this paper aim to study a real-world urban traffic trajectory and visualize a pattern of traffic flow with a simulation tool. Our experiment is installing the sensor module in 40 taxis and our dataset is generated along 24 hours and unscheduled routes. After pre-processing data, we improved an open source traffic visualize tools to suitable for our experiment. Then we simulate our vehicle trajectory data with a dots animation over a period of time, which allows clearly view a traffic flow simulation and a understand the direction of movement of the vehicle or route pattern. In addition we further propose some novel timelines to show spatial-temporal features to improve an urban environment due to the traffic flow.

  • PDF

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.

The design of microscopic system using zoom structure with a fixed magnification and the independency on the variation of object distance (줌 구조를 이용하여 물체거리가 변해도 상면과 배율이 고정되는 현미경 광학계의 설계)

  • 류재명;조재흥;임천석;정진호;전영세;이강배
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.613-622
    • /
    • 2003
  • The multi-configurative microscopic system for inspecting the wire-bonding of reed frame is designed. Rays refracted by objective lens group which is composed of common lens group of x2 and x6 are splitted by beam-splitter, and Rays through the central region and the boundary region of the object imaged at x2 and x6 through imaging lens groups, respectively. The depth of wire structure on the reed frame has about $\pm$3 mm, in order to observe by uniform magnification without the dependency on the variation of objective distance generated by the depth of wire structure on the reed frame, imaging lens groups should be moved on nonlinear locus like mechanically compensated zoom lenses. The nonlinear equations for zoom locus are derived by using the Gaussian bracket. Refraction powers and positions of each groups are numerically determined by solving the equations, and initial design data for each groups is obtained by using Seidel third order aberration theory. The optimization technique is finally utilized to obtain this microscopic system.

Robust Object Tracking based on Weight Control in Particle Swarm Optimization (파티클 스웜 최적화에서의 가중치 조절에 기반한 강인한 객체 추적 알고리즘)

  • Kang, Kyuchang;Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.15-29
    • /
    • 2018
  • This paper proposes an enhanced object tracking algorithm to compensate the lack of temporal information in existing particle swarm optimization based object trackers using the trajectory of the target object. The proposed scheme also enables the tracking and documentation of the location of an online updated set of distractions. Based on the trajectories information and the distraction set, a rule based approach with adaptive parameters is utilized for occlusion detection and determination of the target position. Compare to existing algorithms, the proposed approach provides more comprehensive use of available information and does not require manual adjustment of threshold values. Moreover, an effective weight adjustment function is proposed to alleviate the diversity loss and pre-mature convergence problem in particle swarm optimization. The proposed weight function ensures particles to search thoroughly in the frame before convergence to an optimum solution. In the existence of multiple objects with similar feature composition, this algorithm is tested to significantly reduce convergence to nearby distractions compared to the other existing swarm intelligence based object trackers.

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.