• Title/Summary/Keyword: 의수

Search Result 367, Processing Time 0.021 seconds

Development of Customized Prosthetic Hand Using 3D Printing (3D프린팅을 이용한 사용자 맞춤형 의수 개발)

  • Moon, Mikyeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.110-117
    • /
    • 2018
  • The development of prosthetic hand or prosthetic leg equipment is steadily taking place globally. Though it would be difficult to create or feel the same way as a human hand, it would be a great for the amputated person if they can pick things up or do some movement as they want. It has become possible to develop low-cost prosthetic hand according to development of 3D printing technology. If people can develop personalized prosthetic equipment at similar prices to meet this trend, the utilization and penetration rate will be much higher. In this study, it describes how to develop a user-customizable prosthetic hand using 3D printing. To do this, the transformational parameters of prosthetic hand shape modeling are extracted as variability values, and the functions for controlling prosthetic hand motion are designed as software design patterns. This allows people who need a prosthetic hand to have their own prosthetic hand at a fast and affordable price.

Study on a test method for the endurance of myoelectric hand prosthesis (근전의수의 내구성 시험방법에 대한 연구)

  • Choi, K.W.;Mun, M.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • This paper propose the test method for a performance of the myoelectric hand prosthesis(MHP) controlled according to the myoelectric signal generated in the human muscle. The MHP consists of a mechanical hand, a surface myoelectric sensor(SMES) for a measuring myoelectric signal, a control system and a charging battery. The two commercialized MHP is tested for the grip endurance property. The test results is not difference a noise and a grip force. The proposed test method is proved the reliability of MHP by the endurance test.

UV Treatment Technique for High Electrical Conductivity and Adhesion Strength of 3D Printed Circuit (3D 프린터로 제작된 회로의 전기전도성 및 접착강도 향상을 위한 UV 소결 기술)

  • Lee, Se-Hun;Gwon, O-Chang;Lee, Yu-Mi;Lee, Heon-Ju;Mun, Myeong-Un
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.340-340
    • /
    • 2015
  • 상지 절단 장애인들을 위한 미관형 의수는 95% 이상의 시장 보급률을 보인다. 하지만 외부 형상 향상에만 연구 초점이 맞추어져 있어 많은 장애인들이 의수를 착용할 때 차가운 표면으로 인해 이질감을 느낀다. 이로 인해 의수 제작 업체 및 절단 장애인들은 착용 시 이질감이 적은 의수의 보급을 희망하고 있다. 그러므로 본 연구에서는 인체와 유사한 온도를 발생시켜 이질감을 감소시키는 의수를 개발하기 위해 유연 기판인 TPU (Temperature Polyurethane)와 PET (Polyethylene terephthalate) 위에 상용 silver nano paste를 3D 프린터로 인쇄하였으며, UV 표면처리를 사용하여 단시간 내에 낮은 저항과, 높은 회로 접착강도를 갖는 회로를 개발 하였다.

  • PDF

Control of an Artificial Arm using Flex Sensor Signal (굽힘 센서신호를 이용한 인공의수의 제어)

  • Yoo, Jae-Myung;Kim, Young-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.738-743
    • /
    • 2007
  • In this paper, a muscle motion sensing system and an artificial arm control system are studied. The artificial arm is for the people who lost one's forearm. The muscle motion sensing system detect the intention of motion from the upper arm's muscle. In sensing system we use flex sensors which is electrical resistance type sensor. The sensor is attached on the biceps brachii muscle and coracobrachialis muscle of the upper arm. We propose an algorithm to classify the one's intention of motions from the sensor signal. Using this algorithm, we extract the 4 motions which are flexion and extension of the forearm, pronation and supination of the arm. To verify the validity of the proposed algorithms we made experiments with two d.o.f. artificial arm. To reduce the control errors of the artificial arm we also proposed a fuzzy PID control algorithm which based on the errors and error rate.

Development of gripping force and durability test standard for myoelectric prosthetic hand (근전전동의수의 파지력 및 내구성 시험 표준 개발)

  • Gook Chan Cha;Suk-Min Lee;Ki-Won Choi;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.393-399
    • /
    • 2023
  • Upper limb amputees wear an upper limb prosthesis for both aesthetic purposes and functional necessity, and in particular, in the case of amputee with both hands, it is essential to wear a myoelectric prosthetic hand capable of gripping action. The prosthetic hand operated by the EMG signal of the remaining muscles is a public insurance benefit item of the Industrial Accident Compensation Insurance, and test method standards are needed to be developed for the safety of the user and the effectiveness of the product performance. In this study, we developed systems for measuring the gripping force of myoelectric hand prosthesis by a load cell and for durability test of the prosthesis over repeated use with a proximity sensor, and propose a test method standard. Since the international test method standard has not yet been established, it is expected that Korea will be able to play a leading role in this standardization field in the future.

Improvement of an Underactuated Prosthetic Hand Based on Grasp Performance Evaluation (파지성능 평가에 기반한 의수용 핸드의 설계 개선)

  • Lee, Geon Ho;Kwon, Hyo Chan;Kim, Kwon Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.843-849
    • /
    • 2016
  • It has been shown that the adaptive grasp feature can be implemented by underactuated robotic hands with a minimal number of actuators. Following this approach, a new design of prosthetic hand is presented. A method is proposed for evaluating grasp performance using cylinders, spheres, and square bars of various sizes. The effects of the major design parameters were investigated experimentally and an improved design is proposed.

Low-cost Prosthetic Hand Model using Machine Learning and 3D Printing (머신러닝과 3D 프린팅을 이용한 저비용 인공의수 모형)

  • Donguk Shin;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2024
  • Patients with amputations of both hands need prosthetic hands that serve both cosmetic and functional purposes, and research on prosthetic hands using electromyography of remaining muscles is active, but there is still the problem of high cost. In this study, an artificial prosthetic hand was manufactured and its performance was evaluated using low-cost parts and software such as a surface electromyography sensor, machine learning software Edge Impulse, Arduino Nano 33 BLE, and 3D printing. Using signals acquired with surface electromyography sensors and subjected to digital signal processing through Edge Impulse, the flexing movement signals of each finger were transmitted to the fingers of the prosthetic hand model through training to determine the type of finger movement using machine learning. When the digital signal processing conditions were set to a notch filter of 60 Hz, a bandpass filter of 10-300 Hz, and a sampling frequency of 1,000 Hz, the accuracy of machine learning was the highest at 82.1%. The possibility of being confused between each finger flexion movement was highest for the ring finger, with a 44.7% chance of being confused with the movement of the index finger. More research is needed to successfully develop a low-cost prosthetic hand.

Development of a Haptic System for Grasp Force Control of Underactuated Prosthetics Hands (과소 구동 전동의수의 파지력 제어를 위한 햅틱 시스템 개발)

  • Lim, Hyun Sang;Kwon, Hyo Chan;Kim, Kwon Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.415-420
    • /
    • 2017
  • Underactuated prosthetic hands are relatively light and economical. In this work, an economical grasping force control system is proposed for underactuated prosthetic hands with adaptive grasp capability. The prosthetic hand is driven by a main cable based on a set of electromyography sensors on the forearm of a user. Part of the main cable tension related to grasping force is fed back to the user by a skin-mounted vibrator. The proper relationship between the grasping force and the vibrator drive voltage was established and prototype tests were performed on a group of users. Relatively accurate grasping force control was achieved with minimal training of users.

Design of Control System for Myoelectric Signal Driving Type Myoelectric Hand Prosthesis (근전위 신호구동형 전동의수의 제어시스템 설계)

  • Choi, Gi-Won;Lee, Myung-Un;Ra, Sun-Gil;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.248-257
    • /
    • 2007
  • This paper presents the control system for driving myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. A surface myoelectric sensor for measuring myoelectric signal is designed a skin interface and a processing circuit according to myoelectric signal output property. The control system consists of two controller for driving dual motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the proposed control system.