• Title/Summary/Keyword: 의사결정요인

Search Result 1,442, Processing Time 0.027 seconds

Analysis of the Influence of Job Satisfaction and the Performance-oriented Remuneration in Electric Power Companies on Trust in Manager: Focusing on the Mediating Effect of Organizational Justice (전력공기업의 직무만족과 성과보수가 경영자신뢰에 미치는 영향관계에서의 조직공정성의 매개효과 검증)

  • Leen, Jae-Mahn
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.5
    • /
    • pp.143-158
    • /
    • 2021
  • The purpose of this study is to suggest a direction for enhancing the mutual trust level between employees and managers by examining the effect of job satisfaction of electric power companies's employees and performance-oriented remuneration paid to them on awareness level of organizational justice and a trust in manager. Based on a significant positive relationship between employee's job satisfaction and trust in a manager, a significant positive relationship between employee's job satisfaction and perception of organizational justice, and a positive relationship between organizational justice and trust in manager, it was possible to confirm the mediating role of organizational justice between job satisfaction and a trust in manager. In addition, although performance-oriented remuneration did not have a significant effect on trust in manager directly, it was found to have a significant negative effect on distributive justice and procedural justice, but for interactional justice did not appear to have a significant influence. Because the autonomy of the labor budget is quite limited due to the government's total regulation on the size of the labor budget for public enterprises and due to the government's evaluation of management of public enterprises, it can be explained as having a negative effect on the perception of organizational justice. In addition, since the partial mediating effect of distributive justice and interactional justice was confirmed in the relationship between job satisfaction and trust in manager, the mediating effect of procedural justice was insignificant, it was confirmed that the need to establish and operate an internal HR management system based on smooth communication that employees can satisfy and accept can have a significant impact on trust in manager. On the other hand, because the negative complete mediating effect of distributive justice and procedural justice between performance-oriented remuneration and trust in manager was significantly confirmed, It is showing that employees' negative perceptions of performance distribution procedures and distribution results had a negative effect on trust in manager. The results of this study suggest that employees will perceive the organization as fair, and trust the manager who is the decision maker, when they are fully rewarded for their performance, with job satisfaction, a fair evaluation of their efforts, even if there are various factors that can influence managers to be trusted by their employees.

A Study on the Development of an Assessment Index for Selecting Start-ups on Balanced Scorecard (균형성과표(BSC) 기반 창업기업 선정평가지표 개발)

  • Jung, kyung Hee;Choi, Dae Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.49-62
    • /
    • 2018
  • The purpose of this study is to develop an assessment index for the selection of promising start-ups, which will enhance the efficiency of program that support start-ups. In order to develop assessment models for selecting start-ups, three major research steps were conducted. First, this study attempted to theoretically redefine the assessment index from the perspective of the Balanced Scorecard (BSC) through a literature review. Second, major assessment index were derived using Delphi technique for experts in start-up areas. Third, weights were derived by applying AHP technique to calculate the importance of each index. The results of this study are summarized as follows. First, this study attempted to apply the assessment model for selecting start-ups from the Balanced Scorecard (BSC) view through the previous study review. Second, the final major questions were derived with sufficient opinions collected and structured survey of leading start-up experts in areas related to research subjects and elicited the most representative questions. Third, the results of applying the weights of the main selected assessment index, commercialization viewpoint is the most priority, followed by market view, technology development viewpoint, and organizational capability viewpoint. In the middle section, th ability to make products in the commercialization viewpoint, market competitiveness in the market, product discrimination capacity in the technology development perspective, and the ability of the entrepreneur in the organizational capacity perspective were important. Overall important items were found to be in the order of the capabilities of entrepreneurs, market competitiveness, product fire capability, and product discrimination. The importance of small items was highest priority for comparative excellence of competing products, and the degree of marketability, capacity of entrepreneurship, ability to raise capital, desire for entrepreneurship, and passion were shown. The results of this study presented a conceptual alternative to the preceding study on the development of existing selection assessment indexes. And it provides meaningful and important implications as an attempt to develop more sophisticated indicators by overcoming the limitations of empirical research on only some of the evaluation metrics.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.

A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior (전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구)

  • Chung, Nam-Ho;Kim, Jae-Kyung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.175-191
    • /
    • 2011
  • With the MICE(Meeting, Incentive travel, Convention, Exhibition) industry coming into the spotlight, there has been a growing interest in the domestic exhibition industry. Accordingly, in Korea, various studies of the industry are being conducted to enhance exhibition performance as in the United States or Europe. Some studies are focusing particularly on analyzing visiting patterns of exhibition visitors using intelligent information technology in consideration of the variations in effects of watching exhibitions according to the exhibitory environment or technique, thereby understanding visitors and, furthermore, drawing the correlations between exhibiting businesses and improving exhibition performance. However, previous studies related to booth recommendation systems only discussed the accuracy of recommendation in the aspect of a system rather than determining changes in visitors' behavior or perception by recommendation. A booth recommendation system enables visitors to visit unplanned exhibition booths by recommending visitors suitable ones based on information about visitors' visits. Meanwhile, some visitors may be satisfied with their unplanned visits, while others may consider the recommending process to be cumbersome or obstructive to their free observation. In the latter case, the exhibition is likely to produce worse results compared to when visitors are allowed to freely observe the exhibition. Thus, in order to apply a booth recommendation system to exhibition halls, the factors affecting the performance of the system should be generally examined, and the effects of the system on visitors' unplanned visiting behavior should be carefully studied. As such, this study aims to determine the factors that affect the performance of a booth recommendation system by reviewing theories and literature and to examine the effects of visitors' perceived performance of the system on their satisfaction of unplanned behavior and intention to reuse the system. Toward this end, the unplanned behavior theory was adopted as the theoretical framework. Unplanned behavior can be defined as "behavior that is done by consumers without any prearranged plan". Thus far, consumers' unplanned behavior has been studied in various fields. The field of marketing, in particular, has focused on unplanned purchasing among various types of unplanned behavior, which has been often confused with impulsive purchasing. Nevertheless, the two are different from each other; while impulsive purchasing means strong, continuous urges to purchase things, unplanned purchasing is behavior with purchasing decisions that are made inside a store, not before going into one. In other words, all impulsive purchases are unplanned, but not all unplanned purchases are impulsive. Then why do consumers engage in unplanned behavior? Regarding this question, many scholars have made many suggestions, but there has been a consensus that it is because consumers have enough flexibility to change their plans in the middle instead of developing plans thoroughly. In other words, if unplanned behavior costs much, it will be difficult for consumers to change their prearranged plans. In the case of the exhibition hall examined in this study, visitors learn the programs of the hall and plan which booth to visit in advance. This is because it is practically impossible for visitors to visit all of the various booths that an exhibition operates due to their limited time. Therefore, if the booth recommendation system proposed in this study recommends visitors booths that they may like, they can change their plans and visit the recommended booths. Such visiting behavior can be regarded similarly to consumers' visit to a store or tourists' unplanned behavior in a tourist spot and can be understand in the same context as the recent increase in tourism consumers' unplanned behavior influenced by information devices. Thus, the following research model was established. This research model uses visitors' perceived performance of a booth recommendation system as the parameter, and the factors affecting the performance include trust in the system, exhibition visitors' knowledge levels, expected personalization of the system, and the system's threat to freedom. In addition, the causal relation between visitors' satisfaction of their perceived performance of the system and unplanned behavior and their intention to reuse the system was determined. While doing so, trust in the booth recommendation system consisted of 2nd order factors such as competence, benevolence, and integrity, while the other factors consisted of 1st order factors. In order to verify this model, a booth recommendation system was developed to be tested in 2011 DMC Culture Open, and 101 visitors were empirically studied and analyzed. The results are as follows. First, visitors' trust was the most important factor in the booth recommendation system, and the visitors who used the system perceived its performance as a success based on their trust. Second, visitors' knowledge levels also had significant effects on the performance of the system, which indicates that the performance of a recommendation system requires an advance understanding. In other words, visitors with higher levels of understanding of the exhibition hall learned better the usefulness of the booth recommendation system. Third, expected personalization did not have significant effects, which is a different result from previous studies' results. This is presumably because the booth recommendation system used in this study did not provide enough personalized services. Fourth, the recommendation information provided by the booth recommendation system was not considered to threaten or restrict one's freedom, which means it is valuable in terms of usefulness. Lastly, high performance of the booth recommendation system led to visitors' high satisfaction levels of unplanned behavior and intention to reuse the system. To sum up, in order to analyze the effects of a booth recommendation system on visitors' unplanned visits to a booth, empirical data were examined based on the unplanned behavior theory and, accordingly, useful suggestions for the establishment and design of future booth recommendation systems were made. In the future, further examination should be conducted through elaborate survey questions and survey objects.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus (사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.171-196
    • /
    • 2018
  • With the development of the web, two-way communication and evaluation became possible and marketing paradigms shifted. In order to meet the needs of consumers, web design trends are continuously responding to consumer feedback. As the web becomes more and more important, both academics and businesses are studying consumer emotions and satisfaction on the web. However, some consumer characteristics are not well considered. Demographic characteristics such as age and sex have been studied extensively, but few studies consider psychological characteristics such as regulatory focus (i.e., emotional regulation). In this study, we analyze the effect of web style on consumer emotion. Many studies analyze the relationship between the web and regulatory focus, but most concentrate on the purpose of web use, particularly motivation and information search, rather than on web style and design. The web communicates with users through visual elements. Because the human brain is influenced by all five senses, both design factors and emotional responses are important in the web environment. Therefore, in this study, we examine the relationship between consumer emotion and satisfaction and web style and design. Previous studies have considered the effects of web layout, structure, and color on emotions. In this study, however, we excluded these web components, in contrast to earlier studies, and analyzed the relationship between consumer satisfaction and emotional indexes of web-style only. To perform this analysis, we collected consumer surveys presenting 40 web style themes to 204 consumers. Each consumer evaluated four themes. The emotional adjectives evaluated by consumers were composed of 18 contrast pairs, and the upper emotional indexes were extracted through factor analysis. The emotional indexes were 'softness,' 'modernity,' 'clearness,' and 'jam.' Hypotheses were established based on the assumption that emotional indexes have different effects on consumer satisfaction. After the analysis, hypotheses 1, 2, and 3 were accepted and hypothesis 4 was rejected. While hypothesis 4 was rejected, its effect on consumer satisfaction was negative, not positive. This means that emotional indexes such as 'softness,' 'modernity,' and 'clearness' have a positive effect on consumer satisfaction. In other words, consumers prefer emotions that are soft, emotional, natural, rounded, dynamic, modern, elaborate, unique, bright, pure, and clear. 'Jam' has a negative effect on consumer satisfaction. It means, consumer prefer the emotion which is empty, plain, and simple. Regulatory focus shows differences in motivation and propensity in various domains. It is important to consider organizational behavior and decision making according to the regulatory focus tendency, and it affects not only political, cultural, ethical judgments and behavior but also broad psychological problems. Regulatory focus also differs from emotional response. Promotion focus responds more strongly to positive emotional responses. On the other hand, prevention focus has a strong response to negative emotions. Web style is a type of service, and consumer satisfaction is affected not only by cognitive evaluation but also by emotion. This emotional response depends on whether the consumer will benefit or harm himself. Therefore, it is necessary to confirm the difference of the consumer's emotional response according to the regulatory focus which is one of the characteristics and viewpoint of the consumers about the web style. After MMR analysis result, hypothesis 5.3 was accepted, and hypothesis 5.4 was rejected. But hypothesis 5.4 supported in the opposite direction to the hypothesis. After validation, we confirmed the mechanism of emotional response according to the tendency of regulatory focus. Using the results, we developed the structure of web-style recommendation system and recommend methods through regulatory focus. We classified the regulatory focus group in to three categories that promotion, grey, prevention. Then, we suggest web-style recommend method along the group. If we further develop this study, we expect that the existing regulatory focus theory can be extended not only to the motivational part but also to the emotional behavioral response according to the regulatory focus tendency. Moreover, we believe that it is possible to recommend web-style according to regulatory focus and emotional desire which consumers most prefer.

Implementation Strategy for the Elderly Care Solution Based on Usage Log Analysis: Focusing on the Case of Hyodol Product (사용자 로그 분석에 기반한 노인 돌봄 솔루션 구축 전략: 효돌 제품의 사례를 중심으로)

  • Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.117-140
    • /
    • 2019
  • As the aging phenomenon accelerates and various social problems related to the elderly of the vulnerable are raised, the need for effective elderly care solutions to protect the health and safety of the elderly generation is growing. Recently, more and more people are using Smart Toys equipped with ICT technology for care for elderly. In particular, log data collected through smart toys is highly valuable to be used as a quantitative and objective indicator in areas such as policy-making and service planning. However, research related to smart toys is limited, such as the development of smart toys and the validation of smart toy effectiveness. In other words, there is a dearth of research to derive insights based on log data collected through smart toys and to use them for decision making. This study will analyze log data collected from smart toy and derive effective insights to improve the quality of life for elderly users. Specifically, the user profiling-based analysis and elicitation of a change in quality of life mechanism based on behavior were performed. First, in the user profiling analysis, two important dimensions of classifying the type of elderly group from five factors of elderly user's living management were derived: 'Routine Activities' and 'Work-out Activities'. Based on the dimensions derived, a hierarchical cluster analysis and K-Means clustering were performed to classify the entire elderly user into three groups. Through a profiling analysis, the demographic characteristics of each group of elderlies and the behavior of using smart toy were identified. Second, stepwise regression was performed in eliciting the mechanism of change in quality of life. The effects of interaction, content usage, and indoor activity have been identified on the improvement of depression and lifestyle for the elderly. In addition, it identified the role of user performance evaluation and satisfaction with smart toy as a parameter that mediated the relationship between usage behavior and quality of life change. Specific mechanisms are as follows. First, the interaction between smart toy and elderly was found to have an effect of improving the depression by mediating attitudes to smart toy. The 'Satisfaction toward Smart Toy,' a variable that affects the improvement of the elderly's depression, changes how users evaluate smart toy performance. At this time, it has been identified that it is the interaction with smart toy that has a positive effect on smart toy These results can be interpreted as an elderly with a desire to meet emotional stability interact actively with smart toy, and a positive assessment of smart toy, greatly appreciating the effectiveness of smart toy. Second, the content usage has been confirmed to have a direct effect on improving lifestyle without going through other variables. Elderly who use a lot of the content provided by smart toy have improved their lifestyle. However, this effect has occurred regardless of the attitude the user has toward smart toy. Third, log data show that a high degree of indoor activity improves both the lifestyle and depression of the elderly. The more indoor activity, the better the lifestyle of the elderly, and these effects occur regardless of the user's attitude toward smart toy. In addition, elderly with a high degree of indoor activity are satisfied with smart toys, which cause improvement in the elderly's depression. However, it can be interpreted that elderly who prefer outdoor activities than indoor activities, or those who are less active due to health problems, are hard to satisfied with smart toys, and are not able to get the effects of improving depression. In summary, based on the activities of the elderly, three groups of elderly were identified and the important characteristics of each type were identified. In addition, this study sought to identify the mechanism by which the behavior of the elderly on smart toy affects the lives of the actual elderly, and to derive user needs and insights.

Self-Regulatory Mode Effects on Emotion and Customer's Response in Failed Services - Focusing on the moderate effect of attribution processing - (고객의 자기조절성향이 서비스 실패에 따른 부정적 감정과 고객반응에 미치는 영향 - 귀인과정에 따른 조정적 역할을 중심으로 -)

  • Sung, Hyung-Suk;Han, Sang-Lin
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.83-110
    • /
    • 2010
  • Dissatisfied customers may express their dissatisfaction behaviorally. These behavioral responses may impact the firms' profitability. How do we model the impact of self regulatory orientation on emotions and subsequent customer behaviors? Obviously, the positive and negative emotions experienced in these situations will influence the overall degree of satisfaction or dissatisfaction with the service(Zeelenberg and Pieters 1999). Most likely, these specific emotions will also partly determine the subsequent behavior in relation to the service and service provider, such as the likelihood of complaining, the degree to which customers will switch or repurchase, and the extent of word of mouth communication they will engage in(Zeelenberg and Pieters 2004). This study investigates the antecedents, consequences of negative consumption emotion and the moderate effect of attribution processing in an integrated model(self regulatory mode → specific emotions → behavioral responses). We focused on the fact that regret and disappointment have effects on consumer behavior. Especially, There are essentially two approaches in this research: the valence based approach and the specific emotions approach. The authors indicate theoretically and show empirically that it matters to distinguish these approaches in services research. and The present studies examined the influence of two regulatory mode concerns(Locomotion orientation and Assessment orientation) with making comparisons on experiencing post decisional regret and disappointment(Pierro, Kruglanski, and Higgins 2006; Pierro et al. 2008). When contemplating a decision with a negative outcome, it was predicted that high (vs low) locomotion would induce more disappointment than regret, whereas high (vs low) assessment would induce more regret than disappointment. The validity of the measurement scales was also confirmed by evaluations provided by the participating respondents and an independent advisory panel; samples provided recommendations throughout the primary, exploratory phases of the study. The resulting goodness of fit statistics were RMR or RMSEA of 0.05, GFI and AGFI greater than 0.9, and a chi-square with a 175.11. The indicators of the each constructs were very good measures of variables and had high convergent validity as evidenced by the reliability with a more than 0.9. Some items were deleted leaving those that reflected the cognitive dimension of importance rather than the dimension. The indicators were very good measures and had convergent validity as evidenced by the reliability of 0.9. These results for all constructs indicate the measurement fits the sample data well and is adequate for use. The scale for each factor was set by fixing the factor loading to one of its indicator variables and then applying the maximum likelihood estimation method. The results of the analysis showed that directions of the effects in the model are ultimately supported by the theory underpinning the causal linkages of the model. This research proposed 6 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the paths of research model and the overall fitting level of structural equation model and the result was successful. Also, Locomotion orientation more positively influences disappointment when internal attribution is high than low and Assessment orientation more positively influences regret when external attribution is high than low. In sum, The results of our studies suggest that assessment and locomotion concerns, both as chronic individual predispositions and as situationally induced states, influence the amount of people's experienced regret and disappointment. These findings contribute to our understanding of regulatory mode, regret, and disappointment. In previous studies of regulatory mode, relatively little attention has been paid to the post actional evaluative phase of self regulation. The present findings indicate that assessment concerns and locomotion concerns are clearly distinct in this phase, with individuals higher in assessment delving more into possible alternatives to past actions and individuals higher in locomotion engaging less in such reflective thought. What this suggests is that, separate from decreasing the amount of counterfactual thinking per se, individuals with locomotion concerns want to move on, to get on with it. Regret is about the past and not the future. Thus, individuals with locomotion concerns are less likely to experience regret. The results supported our predictions. We discuss the implications of these findings for the nature of regret and disappointment from the perspective of their relation to regulatory mode. Also, self regulatory mode and the specific emotions(disappointment and regret) were assessed and their influence on customers' behavioral responses(inaction, word of mouth) was examined, using a sample of 275 customers. It was found that emotions have a direct impact on behavior over and above the effects of negative emotions and customer behavior. Hence, We argue against incorporating emotions such as regret and disappointment into a specific response measure and in favor of a specific emotions approach on self regulation. Implications for services marketing practice and theory are discussed.

  • PDF

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

The Effects of Consumer Value Cognition on Benefits and Attributes of Culture-Art Products (문화예술상품 소비자의 가치인식이 추구혜택과 상품속성에 미치는 영향)

  • Shin, Eun Joo;Rhee, Young Sun
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.177-207
    • /
    • 2012
  • Today's consumers perceive consumption as a representation of themselves. It is not simply an act that fulfills a consumer's physical and practical needs. Even in terms of life quality, consumers increasingly want to achieve an emotional and sensible experience through consumption. Consumers now make decisions based on their need to express their position in relation to other people, pursue emotional satisfaction, and try to improve the quality of life. Culture-art products that meet such internal and external demands of consumers have made significant improvements in both quantity and quality, because of the social interest and policy support. The recognition of personal and social values of culture and arts has brought about interest in and need for culture-art products. Businesses have agilely embraced such change and actively implemented various marketing strategies utilizing culture and arts. For example, businesses began to sponsor artists who produce culture-art products while building facilities for cultural and art performances or exhibitions. Businesses have also provided performances and exhibitions free-of-charge or at affordable prices. As a result, the supply in the market has started to exceed its demand as is often the case in many of other markets. However, such imbalance has occurred not because of over-supply but because of a lack of demand. Given these circumstances, the government and culture and art related organizations, which had mainly concentrated on the supply side, started to recognize the importance of creating personal and social values in culture and arts. As a result, the government and various organizations are now creating various strategies that include policy measures to achieve their new found goal. Unfortunately however, such efforts are not meeting the expectations. Focusing on above-mentioned circumstances and problems, this study aims to find measures to create demand for culture-art products in the internal conditions of those who consume culture-art products. In other words, given that the demand for culture-art products has not increased despite all external conditions to encourage consumption, this study aims to find the reasons in consumers' value judgment on culture-art products. Though there were recent studies on culture-art products that applied consumer behavior on marketing theories, most of them focused on peripheral aspects such as people's motivation for or satisfaction from watching culture-art events. Hence, there is a need to understand what kind of value consumers perceive from culture-art products and how such value cognition leads to consumption in a comprehensive manner. This study acts as follow-up to a separate study entitled "Qualitative Study about Value Cognition and Benefits of Consumer on Culture-Art Products". The current study aims to extend practical implications that enhance the effectiveness of marketing strategies among the producing and policy agencies in the industry. The purpose of this study is to investigate dimensions of value cognition, benefits and attributes of culture-art products, and identify the effects of consumer value cognition on benefits and attributes. The questionnaire was developed based on the conceptual structure of qualitative research and previous researches. It was composed of value cognition, benefits, attributes of culture-art products and demographic variables. This survey was conducted on-line and off-line among a total of 662 persons ranging from their teens to their 50's who were living in Seoul, Gyeonggi-do, various metropolitan cities, and small and medium-sized cities. The data collected was analyzed by factor analysis and path analysis using SPSS WIN 18.0 and AMOS 16.0. This empirical study found that the dimensions of value cognition of culture-art products were categorized into personal goods, aesthetic goods and public property. This shows that the consumers perceive culture-art products as products that are worthy enough to pay the costs not just for personal benefits but also for their social values. Also the formation of value cognition for culture-art products requires special conditions unlike that for physical consumer goods and services, which simply require marketing stimuli. The dimensions of benefits pursued by consuming culture-art products were found to be composed of four types - pursuit of aesthetic benefits, pursuit of actual benefits, pursuit of emotional benefits, and pursuit of conspicuous character. This result implies that people consume culture-art products not just to pursue pleasure from emotional and intelligent satisfaction as well as social relations, but also to seek the needs and benefits embodied at a social level. The dimensions of attributes of culture-art products had seven different factors, - environmental, price, evaluation, people, artwork, composition, and personal relations - which is plentiful. This is because the attributes of culture-art products are very complicated compared to other consumer goods or services. Since culture-art products include not just cultural or artistic works but also all physical, human, environmental, and systemic elements of the products in a comprehensive manner, consumers perceive everything they experience in the process of consuming culture-art products as part of the products. The dimensions of value cognition was found to affect attributes of the products, mostly using pursued benefits as a mediating factors. This result is consistent with the result of qualitative research, and proves that applying the means-end chain theory in the reverse direction is reasonable. The result can be interpreted that consumers' value cognitions for culture-art products turns into actual benefits leading to consumers' decisions. Furthermore, this result reveals that when consumers choose culture-art products, they take into account the attributes of culture-art products depending on the benefits they pursue. These results confirm that despite their conceptual and abstract attributes, culture-art products have values that contribute to actual benefits for individual consumers and society. Hence, value cognition generates benefits to be pursued and this in turn affects the consumers' choices of attributes on products. Based on the conceptual structure of consumers' value cognitions on culture-art products and its dimensions, it is possible to find detailed methods to provide opportunities for education and training to form and reinforce positive value cognition on culture-art products. And through those methods, it will be possible to develop attributes of culture-art products according to the dimensions of pursued benefits, and allow conceptual products become the subject to valuable consumption in real life. These results provide theoretical understanding of consumer behavior in culture marketing and useful information to culture-art producers, companies that use culture and art, and government agencies that use culture-art as a mean to improve the public perception of quality of life. As a follow up on this study, there should be experimental studies that can develop criteria visualizing the demands of consumers who purchase culture-art products and identify their detailed attributes. Studies that compare characteristics of different areas within the culture-art product category and in-depth studies on a specific area or genre will also be needed. In order to develop marketing strategies for culture-art products, studies on the formation and reinforcement of positive value cognition on culture-art products and education for the development of consumer demand as well as on the development and differentiation of attributes of culture-art products depending on types of consumer groups should also follow.

  • PDF