• 제목/요약/키워드: 의사결정나무회귀분석

검색결과 124건 처리시간 0.023초

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.

전술제대 공격작전간 전투원 생존성에 관한 연구 (Analysis of Survivability for Combatants during Offensive Operations at the Tactical Level)

  • 김재오;조형준;김각규
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.921-932
    • /
    • 2015
  • 본 연구에서는 증강된 보병대대의 과학화 전투훈련 데이터 중 공격작전에 관한 장병들의 생존분석을 실시하였다. 과학화 전투훈련은 KCTC(Korea Combat Training Center)로 불리는 전투훈련장에서 MILES(Multiple Integrated Lazer Engagement System)와 중앙통제장비체계 등 과학화된 훈련장비와 체계 운용하 훈련부대가 적 전술 및 무기체계를 사용하는 전문 대항군과 실시하는 쌍방 자유기동훈련이다. 이는 훈련기간 동안 훈련지역의 모든 데이터가 저장되어 훈련통제 뿐 아니라 분석 및 사후검토를 할 수 있는 첨단화된 군사 훈련으로 통계적 분석이 가능한 데이터를 제공한다. 분석방법은 모수적 분포 가정이 필요하지 않은 Cox의 비례위험모형을 적용하였으며, 보다 풍부하고 용이한 해석을 위해 의사결정나무모형(CART(Classification and Regression Trees), GUIDE(Generalized, Unbiased, Interaction Detection and Estimation), CTREE(Conditional Inference Trees))을 활용하였다. Cox 비례위험모형의 비례성 가정을 확인하여 이를 위배하는 변수에 대해서 층화하여 분석하고, Cox 비례위험모형 결과 복무기간에 관한 해석이 용이하지 않아 단변량으로 local 회귀분석을 통해 추가적인 해석을 시도하였다. CART, GUIDE, CTREE는 모형의 특성별로 나무모형을 형성하며 이를 통하여 다양한 해석이 가능하다.

데이터마이닝을 활용한 소프트웨어 개발인력의 업무 지속수행의도 결정요인 분석 (A Study of Factors Associated with Software Developers Job Turnover)

  • 전인호;박선웅;박윤주
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2015
  • 국내 소프트웨어(SW) 개발인력의 미충원율은 매우 높으며, 특히 2년 이상의 현장경력이 있는 고급 개발자의 부족문제는 심각하다. 최근 정부도 이를 인식하고, 정책적으로 SW개발 신규인력 양성에 힘을 기울이고 있다. 그러나, 이러한 노력은 초급개발자의 수급문제를 해결하는데 효과적일 수 있지만, 업계에서 요구하는 고급 개발자의 부족현상을 해결하는 근본적인 대책으로 인식되지는 못하고 있다. SW 전문개발자를 양성하기 위해서는 초급개발자들이 지속적으로 직무를 수행하여 풍부한 업무경험을 갖춘 고급 개발자로 성장해야 하기 때문이다. 이에, 본 연구는 국내 SW업체에서 근무하고 있는 개발관련 인력들의 업무 지속수행 의도를 조사하고, 이에 영향을 주는 주요요인들을 분석하였다. 이를 위해, 2014년 9월부터 10월까지 국내 SW업체에 근무하고 있는 현직 개발자 총 130명을 대상으로 설문조사를 수행하였으며, 이를 기반으로 SW개발업무 지속수행의도 및 이에 영향을 주는 요인들을 개발자의 특성, 직무환경, 그리고 SW개발자에 대한 사회적 인식 및 산업전망 등의 측면에서 분석하였다. 분석에는 데이터마이닝 기법들 중에서, 분석과정에서의 설명능력이 있는 회귀분석과 의사결정나무가 사용되었다. 회귀분석 결과, SW개발자가 스스로 인식하는 근무 가능한 연령이 높을수록, 내성적인 성향을 가질수록, 또한 적성에 맞아서 직무를 선택한 경우, 지속적 직무 수행 의도가 높은 것으로 나타났다. 이와 더불어, 선형회귀분석에서는 유의하지 않았으나, 규칙기반의 의사결정나무 분석에서 파악된 추가적 요인으로, 새로운 기술에 대한 학습능력 및 SW산업에 대한 전망이 직무 지속수행의도에 영향을 미치는 것으로 나타났다. 이러한 연구결과는 기업의 인적자원관리 및 고급 SW인력 양성정책에 활용될 수 있을 것으로 생각되며, 궁극적으로 SW개발인력의 직무 지속성을 증진시키는 데 기여할 수 있을 것으로 기대된다.

Random Forests 기법을 이용한 백내장 예측모형 - 일개 대학병원 건강검진 수검자료에서 - (A Prediction Model for the Development of Cataract Using Random Forests)

  • 한은정;송기준;김동건
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.771-780
    • /
    • 2009
  • 백내장 질환은 노령인구가 증가하고 있는 시점에서 사회, 경제적으로 심각한 문제로 부각되고 있는 질병으로 조기 진단이 이루어진다면 발병률을 크게 줄일 수 있는 질병이다. 본 연구에서는 백내장을 조기 진단하기 위한 예측 모형을 구축하고자 1994년부터 2001년까지 연세대학병원에서 2회 이상 건강검진을 받고 의사진단을 통해 백내장 여부를 확인할 수 있는 30세 이상 남 녀 3,237명에 대한 건강검진 수검 자료를 활용하여 백내장 발생 위험 예측모형을 개발하였다. 모형개발에는 데이터마이닝 기법인 Random Forests를 사용하였고, 기존의 로지스틱 회귀분석, 판별분석, 의사결정나무 모형(Decision tree), 나이브베이즈(Naive Bayes), 앙상블 모형인 배깅(Bagging)과 아킹(Arcing)을 이용하여 그 성능을 비교 분석하였다. Random Forests를 통해 개발한 백내장 발생 예측모형은 정확도가 67.16%, 민감도가 72.28%였고, 주요 영향요인은 연령, 혈당, 백혈구수치(WBC), 혈소판수치(platelet), 중성지질(triglyceride), BMI였다. 이 결과는 의사의 안과검진 정보 없이 건강검진 수검 자료만으로 백내장 질환 유 무에 관한 정보를 70% 정도 예측할 수 있음을 보여주는 것으로, 백내장의 조기 진단에 많은 기여를 할 것으로 판단된다.

부도예측 개선을 위한 하이브리드 언더샘플링 접근법 (A Hybrid Under-sampling Approach for Better Bankruptcy Prediction)

  • 김태훈;안현철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.173-190
    • /
    • 2015
  • 부도는 막대한 사회적, 경제적 손실을 야기할 수 있으므로, 미리 부도여부를 정확하게 예측하여 선제 대응하는 것은 경영분야에서 대단히 중요한 의사결정문제 중 하나이다. 이에 지능정보시스템 분야에서도 그간 기업의 재무 데이터에 기반해 부도예측을 개선하기 위한 노력을 기울여왔는데, 안타깝게도 기존의 연구들은 대부분 분류모형의 성능 개선을 통해 예측 정확도를 개선하는 것에만 주로 초점을 맞추어 다른 요소들을 충분히 고려하지 못했다는 한계가 있다. 이러한 배경에서 본 연구는 부도예측 모형의 정확도를 개선하기 위한 방편으로 새로운 데이터 전처리 방법, 그 중에서도 효과적인 표본추출 방법을 제안하고자 한다. 일반적으로 부도예측을 위해 사용되는 데이터들은 극심한 데이터 불균형 문제에 노출되어 있는데, 본 연구에서는 k-reverse nearest neighbor(k-RNN)와 one-class support vector machine(OCSVM) 방법을 결합한 하이브리드 언더샘플링(hybrid under-sampling) 접근법을 통해 이같은 데이터 불균형 문제를 해결하고자 하였다. 본 연구에서 제안한 접근법에서 k-RNN은 이상치를 효과적으로 제거할 수 있으며, OCSVM은 다수를 구성하는 등급의 데이터로부터 정보량이 풍부한 표본만 효과적으로 선택할 수 있는 수단으로 활용될 수 있다. 제안된 기법의 성능을 검증하기 위해, 본 연구에서는 국내 한 은행의 비외감기업 부도예측모형 구축에 제안 기법을 적용해 본 뒤, 일반적으로 많이 사용되는 랜덤샘플링(random sampling)과 제안 기법의 성능을 비교해 보았다. 그 결과, 로지스틱 회귀분석, 판별분석, 의사결정나무, SVM 등 대다수의 분류모형에 있어 분류 정확도가 개선됨을 확인할 수 있었으며, 모든 분류모형에 있어 부정 오류, 즉 부실기업을 정상으로 예측하는 오류율이 크게 감소함을 확인할 수 있었다.

데이터마이닝 기법을 활용한 대학수학능력시험 영어영역 정답률 예측 및 주요 요인 분석 (Prediction of Correct Answer Rate and Identification of Significant Factors for CSAT English Test Based on Data Mining Techniques)

  • 박희진;장경애;이윤호;김우제;강필성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권11호
    • /
    • pp.509-520
    • /
    • 2015
  • 대학수학능력시험(수능)은 고등학교 3년간의 학업 성취도를 측정하는 대표적인 평가 도구로서 대한민국 대학 입시에 있어 매우 중요한 역할을 하는 시험이다. 응시생들의 학업 성취도를 효과적으로 평가하기 위해서는 수능의 난이도가 적절하게 조절되어야 하나 지금까지는 수능 난이도의 편차가 매우 크게 나타나 매 입시연도마다 여러 가지 문제점을 야기해왔다. 본 연구에서는 전문가의 판단에 의존한 기존 방식에서 벗어나 지금까지 시행된 모의고사 및 실제 시험을 통해 축적된 자료를 바탕으로 데이터마이닝 기법을 적용하여 영어영역 문제의 난이도를 예측하는 모델을 구축하고 난이도 예측에 영향을 미치는 요소를 판별하고자 한다. 이를 위해 각 문항의 특성을 판별할 수 있는 여러 지표와 함께 지문, 문제, 답안 등에 나타난 단어들의 특징을 토픽 모델링(topic modeling) 기법을 이용하여 정량화하고 이를 바탕으로 선형회귀분석 및 의사결정나무 기법을 이용하여 각 문항의 난이도를 예측하는 모델을 구축하였다. 구축된 예측 모델을 실제 문제에 적용한 결과 난이도의 상/하 구분에 대한 예측 정확도는 90% 수준으로 나타났으며, 실제 정답률 대비 오차 비율은 약 16% 이내인 것으로 나타났다. 또한 배점 및 문제 유형이 문제의 난이도에 큰 영향을 미치며 지문이 특정 주제에 관련된 경우에도 난이도에 영향을 미치는 것을 확인하였다. 본 연구에서 제시된 방법론을 이용하여 영어영역 각 문제들에 대한 기대 정답률의 범위를 추정할 수 있으며 이를 종합하여 영어영역 전체 문제에 대한 정답률 예측을 통해 적절한 난이도의 문제를 출제하는 데 기여할 수 있을 것으로 기대한다.

시계열 자료의 데이터마이닝을 통한 한국산업표준의 제정과 활용 분석 (Analysis of Enactment and Utilization of Korean Industrial Standards(KS) by Time Series Data Mining)

  • 윤재권;김완;이희상
    • 기술혁신연구
    • /
    • 제23권3호
    • /
    • pp.225-253
    • /
    • 2015
  • 표준은 산업발전 및 무역 자유화의 기반이며 사회 경제적인 효율을 향상시키는 중요한 수단이다. 표준과 관련된 정책은 국가적인 차원에서 중요한 이슈 중 하나가 되고 있으며, 이에 따라 산업 분야별 한국산업표준 제정과 활용에 대한 분석은 표준과 관련된 연구에서 중요한 부분이 되고 있다. 본 연구는 분야별 KS 보유 및 제정현황 분석 그리고 열람실적을 이용하여 표준의 활용도를 분석한다. 먼저 KS의 보유현황을 국가정책적인 이슈와 함께 살펴보고, 세부적으로 KS 제정현황이 유사한 분야들은 무엇인지 파악하기 위해 다차원 척도법을 이용하여 시각화 및 군집화를 실시한다. 이후 각 군집별 제정현황이 유사한 분야들의 표준화 제정활동에 영향을 미치는 결정요인이 무엇인지 가설설정에 따른 회귀분석을 실시한다. 연구결과 자본집약도, 연구개발 그리고 매출액이 표준화 제정활동에 영향을 미치는 것으로 나타났다. 이에 따라 정부는 자본집약도가 큰 기업들이 표준화 과정에서 선도적 역할을 유도하고, 연구개발에 따른 표준과 기술특허 등을 정책적으로 연계시키며, 매출액이 큰 기업들이 표준화 활동을 선도하도록 지원정책을 수립해야 한다. 두 번째로 표준의 활용도를 분석하기 위해, KS 열람실적 데이터를 사용하며, 각 KS의 제정연도, 형태 분야별 활용도가 어떻게 다른지 기초통계분석과 의사결정나무를 사용하여 분석을 수행한다. 그 결과 표준의 제정시기가 활용도에 영향을 크게 미치며, 특정 분야와 형태의 KS들은 최근에 제정되었더라도 활용도가 높은 것으로 나타났다. 이에 따라 열람실적이 낮은 표준들에 대한 홍보 정책과 함께, 표준을 제정할 때 미열람되는 표준이 적어지도록 활용도를 고려하는 정책을 수립해야 한다.

남한지역 겨울철 황사출현일수에 대한 범주 예측모형 개발 (Binary Forecast of Asian Dust Days over South Korea in the Winter Season)

  • 손건태;이효진;김승범
    • 응용통계연구
    • /
    • 제24권3호
    • /
    • pp.535-546
    • /
    • 2011
  • 본 연구는 겨울철 남한지역 황사출현일수에 대한 이 범주 계절예측모형 개발을 목적으로 수행되었다. 최근 31년간 관측된 황사출현일수를 예측량으로 하고, 황사발원지 기상요소(지상기온, 강수량, 강설량, 지상풍속)에 대한 NCEP 재분석자료 예측치와 광역규모 기후지수들을 잠재적 예측인자로 사용하였다. 월별로 구분하여 예측모형을 개발하기 위하여 네 종류 통계모형(중회귀모형, 로지스틱 회귀모형, 의사결정나무모형, 지지벡터기계)을 각각 적용하였다. 예측모형 평가측도인 정분류율, 탐지확률, 잘못된 경고를 사용하여 모형 비교하고 예측모형을 제안하였다.

공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형 (Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert)

  • 최원근;김흥섭;고봉진
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.111-118
    • /
    • 2023
  • 스마트팩토리의 구축을 위해서는 제조환경에서 여러 센서 및 기기 등을 연결하여 데이터를 수집하고, 데이터 분석을 통해 생산설비 등의 장애를 진단하거나 예측하여야 한다. 본 논문에서는 공작기계에서 제품을 가공하기 위해 사용되는 절삭용 인서트의 잔여 유효 수명을 예측하기 위해 진동 신호를 기반으로 한 가중화 k-최근접이웃(Weighted k-NN) 알고리즘, 의사결정나무(Decision Tree), 서포트벡터회귀(SVM), XGBoost, 랜덤포레스트(Random forest), 1차원 합성곱신경망(1D-CNN), 그리고 진동 신호를 FFT한 주파수 스펙트럼에 대해 알아보았다. 연구결과, 주파수 스펙트럼으로는 잔여 유효수명의 정확한 예측에 대해서는 신빙성있는 기준을 제공하지 못한다는 것을 알수 있었고, 예측 모델 중 가중화 k-최근접이웃 알고리즘이 MAE가 0.0013, MSE가 0.004, RMSE가 0.0192로 가장 우수한 성능을 나타내었다. 이는 가중화 k-최근접이웃 알고리즘에 의해 예측되는 인서트의 잔여 유효 수명의 오차가 0.001초 수준으로 평가되어, 실제 산업현장에 적용이 가능한 수준으로 사료된다.

머신러닝 분류 알고리즘을 활용한 선박 접안속도 영향요소의 중요도 분석 (Analysis of Feature Importance of Ship's Berthing Velocity Using Classification Algorithms of Machine Learning)

  • 이형탁;이상원;조장원;조익순
    • 해양환경안전학회지
    • /
    • 제26권2호
    • /
    • pp.139-148
    • /
    • 2020
  • 선박이 접안할 때 발생하는 접안에너지에 가장 영향력이 큰 요소는 접안속도이며, 과도한 경우 사고로 이어질 수 있다. 접안속도의 결정에 영향을 미치는 요소는 다양하지만 기존 연구에서는 일반적으로 선박 크기에 제한하여 분석하였다. 따라서 본 연구에서는 다양한 선박 접안속도의 영향요소를 반영하여 분석하고 그에 따른 중요도를 도출하고자 한다. 분석에 활용한 데이터는 국내 한 탱커부두의 선박 접안속도를 실측한 것을 바탕으로 하였다. 수집된 데이터를 활용하여 머신러닝 분류 알고리즘인 의사결정나무(Decision Tree), 랜덤포레스트(Random Forest), 로지스틱회귀(Logistic Regression), 퍼셉트론(Perceptron)을 비교분석하였다. 알고리즘 평가 방법으로는 혼동 행렬에 따른 모델성능 평가지표를 사용하였다. 분석 결과, 가장 성능이 좋은 알고리즘으로는 퍼셉트론이 채택되었으며 그에 따른 접안속도 영향요인의 중요도는 선박 크기(DWT), 부두 위치(Jetty No.), 재화상태(State) 순으로 나타났다. 이에 따라 선박 접안 시, 선박의 크기를 비롯하여 부두 위치, 재화 상태 등 다양한 요인을 고려하여 접안속도를 설계하여야 한다.