• Title/Summary/Keyword: 의료 장비

Search Result 605, Processing Time 0.027 seconds

An Algorithm for Detecting Residual Quantity of Ringer's Solution for Automatic Replacement (링거 자동 교체를 위한 잔량 검출 알고리즘)

  • Kim, Chang-Wook;Woo, Sang-Hyo;Zia, Mohy Ud Din;Won, Chul-Ho;Hong, Jae-Pyo;Cho, Jin-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.30-36
    • /
    • 2008
  • Recently, ere are many researches to improve the quality of e medical service such as Point of care (POC). To improve the quality of the medical service, not only good medical device but also more man power is required. Especially, the number of nurses are very few in Korea that is almost the lowest rank compared to OECD countries. If the simple repetition works of the nurse could be removed, it is possible to use the skillful nurse for other works and provide better quality services. There are many simple repetition works which the nurses have to do, such as replacing the ringer's solution. To replace the ringer's solution automatically, it is necessary to detect residual quantity of the ringer's solution. In this paper, image processing is used to detect the residual quantity of ringer's solution, and modified self quotient image (SQI) algorithm is used to strong background lights. After modified SQI algorithm, the simple histogram accumulation is done to find the residual quantity of the ringer's solution. The implemented algorithm could be use to replace the ringer's solution automatically or alarm to the nurses to replace the solution.

  • PDF

A Study on Safety Management Inspection of Diagnostic X-ray System (진단용 엑스선 장치의 안전관리 검사에 관한 연구)

  • Lee, Hoo min;Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.887-893
    • /
    • 2018
  • The purpose of this study is to compare the performance of X-ray generators installed in hospitals and universities and apply the quality control items of diagnostic X-ray generators to recognize the importance of periodic performance management. First, the reproducibility and linearity test results showed that the PAE of the reproducibility evaluation was high for the GX-650 devices that met the acceptance criteria in all the experimental conditions and lacked the periodic quality control. In the linearity evaluation, when the tube voltage was set to 100 kVp, It was measured to deviate from the error. In addition, it was found that the PAE in the low-accuracy evaluation results relative to an X-ray tube voltage and tube current of the device low occurrence frequency. The HVL experiment was included in all of the devices at the HVL by tube voltage. Therefore, it is necessary to recognize the importance of quality control of all devices rather than hospital and laboratory, and to manage the device performance by actively managing the device, and to establish a short - term quality control system like special medical devices.

Analysis of Blood pressure influence factor Correction for Photoplethysmography Fusion Algorithm Calibration (광전용적맥파 융합 알고리즘 보정을 위한 혈압 영향인자 상관관계 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • The blood pressure measurement is calculated as a value corresponding to the pressure of the blood vessel using the pressure from the outside for a long time. Due to the recent miniaturization of measurement equipment and the ICT combination of personal healthcare systems, a system that enables continuous and real-time measurement of blood pressure with a sensor is required. In this study, blood pressure was measured using pulse transit time using Photoplethysmography. In this study, blood pressure was estimated by using systolic blood pressure. And it is possible to make measurement only with PPG itself, which can contribute to making a micro blood pressure measuring device. As a result, systolic blood pressure and PPG's S1-P and P-S2 were used to analyze the possibility of blood pressure estimation.

X-ray Image Correction Model for Enhanced Foreign Body Detection in Metals (금속 내부의 이물질 검출 향상을 위한 X-ray 영상 보정 모델)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.15-21
    • /
    • 2019
  • X-rays with shorter wavelengths than ultraviolet light have very good penetration power. It is convergence in industrial and medical fields has been used a lot. n particular, in the industrial field, various researches have been conducted on the detection of foregin body inside metal that can occur in the production process of products such as metal using x-ray, a non-destructive inspection device. Detectors are becoming increasingly popular for the popularization of DR (Digital Radiography) photography methods that digitally acquire X-ray video images. However, there are cases where foreign body detection is impossible depending on the sensor noise and sensitivity inside the detector. When producing a metal product, since the defective rate of the produced product may increase due to contamination of the foreign body, accurate detection is necessary. In this paper, we provide a correction model for X-ray images acquired in order to improve the efficiency of defect detection such as foreign body inside metal. When applied to defect detection in the production process of metal products through the proposed model, it is expected that the detection of product defects can be processed accurately and quickly.

Effect of level D personal protective equipment on chest compression for pre-hospital arrest patients with suspected or confirmed COVID-19 : A randomized crossover simulation trial (코로나19 의심 또는 확진 환자가 병원 밖 심정지 발생 시 구조자의 개인 보호장비(PPE) 착용에 의한 가슴압박 효과 비교 : 무작위 교차 시뮬레이션 연구)

  • Hong, Seok-Hwan;Yang, Yeun Soo;Han, Sang-Kyun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.25 no.1
    • /
    • pp.23-36
    • /
    • 2021
  • Purpose: The purpose of this study was to determine how the use of level D personal protective equipment (PPE) and cardiopulmonary resuscitation (CPR) feedback equipment affects chest compression (CC). Furthermore, this study provides basic data for developing Korean CPR guidelines that can be applied to patients with suspected or confirmed COVID-19. Methods: This randomized, single-blinded, crossover simulation trial included 26 student paramedics who performed 2-minute chest compressions using three different methods: Method A involved performing traditional CC for two minutes without donning level D PPE, Method B involved performing CC while donning level D PPE, and Method C involved performing CC with a CPR feedback device while donning level D PPE. Results: The use of a CPR feedback device during the 2-minute CC increased the exercise intensity of the subjects, but donning level D PPE didn't affect the quality of CC and the exercise intensity. The results of methods A and B showed changes in the quality of compression 80 seconds after the start of CC. No significant changes occurred in 2-minute CC when using the CPR feedback device. Conclusion: Using a CPR feedback device could prevent deterioration in the quality of CC while donning level D PPE.

Volumetric Bone Mineral Density Measurement: for Surgery Specific Bone Volumes (체적골밀도 측정법 동향: 수술부위 골밀도 분석)

  • Lee, Yeon Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2022
  • DEXA, as the standard areal bone mineral density (aBMD) measurement method, often shows an insuficient correlation between aBMDs of the measured bones and referring bones and is inaccurate due to the mass effect. In contrast, quantitative computer tomography (QCT), as a volumetric BMD (vBMD) measurement method, is being advanced so that it uses less radiation before, owing to improved CT device and computer imaging technology. Because dual-energy CTs can modulate the image signals showing tumor or specific chemicals as well as the ability to measure vBMD, they are expanding their application. For pre-checking vBMD of surgeon-specific bone volume at implantation candidate sites, a finite element creation-based local vBMD measurement technique was developed. The local vBMD measurement function for surgeon-specific shape volumes will be added to clinical imaging systems.

A study on the Establishment of a Digital Healthcare Next-Generation Information Protection System

  • Kim, Ki-Hwan;Choi, Sung-Soo;Kim, Il-Hwan;Shin, Yong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.57-64
    • /
    • 2022
  • In this paper, the definition and overview of digital health care that has emerged recently, core technology, and We would like to propose a plan to establish a next-generation information protection system that can protect digital healthcare devices and data from cyber attacks. Various vulnerabilities exist for digital healthcare devices and data, and cyber attacks are possible for those vulnerabilities. Through an attack on digital health care devices and information and communication networks, it can directly adversely affect human life and health, Since digital healthcare data contains sensitive and personal information, it is essential to safely protect it from cyber attacks. In the case of this proposal, for continuous safe management of data and cyber attacks on equipment and communication networks for digital health devices, It is expected to be able to respond more effectively and continuously through the establishment of the next-generation information protection system.

A study on structure of feed sprue considering turbulence and mold temperature in the investment casting process (Investment casting 공정에서 수축률을 고려한 소형탕도의 이상적인 구조와 주형 온도에 관한 연구)

  • Lee, Jong-Rae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Investment casting is a production method commonly used to manufacture precision equipment, medical fields, and accessories, and has continued to develop through the modernization of equipment and high quality of materials, and its scope of use has been expanded. The purpose of this study is to minimize the defect rate by deriving structural improvement and standardization of mold temperature, which are key elements of the investment casting process, to minimize the defect rate. The scope of the study is limited to jewelry manufacturing casting processes suitable for understanding the structure and principles of small gate, and an experimental research is to be conducted by using soft Wax, gypsum powder, and 14 K gold as research materials. According to the results, the most appropriate casting standard temperature for the casting pattern of Alloy 14 k was the lowest turbulence at 980℃ flask temperature of 550℃, so good products could be produced. As a future task of this study, detailed studies are needed to data the structure and system temperature of small gate, reduce production defects in the field, and provide data for excellent investment casting competitiveness.

An Ultrasonic Vessel-Pattern Imaging Algorithm with Low Computational Complexity (낮은 연산 복잡도를 지니는 초음파 혈관 패턴 영상 알고리즘)

  • Um, Ji-Yong
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • This paper proposes an ultrasound vessel-pattern imaging algorithm with low computational complexity. The proposed imaging algorithm reconstructs blood-vessel patterns by only detecting blood flow, and can be applied to a real-time signal processing hardware that extracts an ultrasonic finger-vessel pattern. Unlike a blood-flow imaging mode of typical ultrasound medical imaging device, the proposed imaging algorithm only reconstructs a presence of blood flow as an image. That is, since the proposed algorithm does not use an I/Q demodulation and detects a presence of blood flow by accumulating an absolute value of the clutter-filter output, a structure of the algorithm is relatively simple. To verify a complexity of the proposed algorithm, a simulation model for finger vessel was implemented using Field-II program. Through the behavioral simulation, it was confirmed that the processing time of the proposed algorithm is around 54 times less than that of the typical color-flow mode. Considering the required main building blocks and the amount of computation, the proposed algorithm is simple to implement in hardware such as an FPGA and an ASIC.

Image Restoration Filter using Combined Weight in Mixed Noise Environment (복합잡음 환경에서 결합가중치를 이용한 영상복원 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.210-212
    • /
    • 2021
  • In modern society, various digital equipment are being distributed due to the influence of the 4th industrial revolution, and they are used in a wide range of fields such as automated processes, intelligent CCTV, medical industry, robots, and drones. Accordingly, the importance of the preprocessing process in a system operating based on an image is increasing, and an algorithm for effectively reconstructing an image is drawing attention. In this paper, we propose a filter algorithm based on a combined weight value to reconstruct an image in a complex noise environment. The proposed algorithm calculates the weight according to the spatial distance and the weight according to the difference between the pixel values for the input image and the pixel values inside the filtering mask, respectively. The final output was filtered by applying the join weights calculated based on the two weights to the mask. In order to verify the performance of the proposed algorithm, we simulated it by comparing it with the existing filter algorithm.

  • PDF