Lee Jeongjin;Kang Moon Koo;Cho Myoung Su;Shin Yeong Gil
Journal of KIISE:Computer Systems and Theory
/
v.32
no.10
/
pp.530-540
/
2005
Virtual colonoscopy is an easy and fast method to reconstruct the shape of colon and diagnose tumors inside the colon based on computed tomography images. This is a non-invasive method, which resolves weak points of previous invasive methods. The path for virtual colonoscopy should be generated rapidly and accurately for clinical examination. However, previous methods are computationally expensive because the data structure such as distance map should be constructed in the preprocessing and positions of all the points of the path needs to be calculated. In this paper, we propose the automatic path generation method based on visibility to decrease path generation time. The proposed method does not require preprocessing and generates small number of control points representing the Path instead of all points to generate the path rapidly. Also, our method generates the path based on visibility so that a virtual camera moves smoothly and a comfortable and accurate path is calculated for virtual navigation. Also, our method can be used for general virtual navigation of various kinds of pipes.
The purpose of this study is to propose a convolutional neural network model that can classify normal and abnormal(cardiomegaly) in chest X-ray images. The training data and test data used in this paper were used by acquiring chest X-ray images of patients diagnosed with normal and abnormal(cardiomegaly). Using the proposed deep learning model, we classified normal and abnormal(cardiomegaly) images and verified the classification performance. When using the proposed model, the classification accuracy of normal and abnormal(cardiomegaly) was 99.88%. Validation of classification performance using normal images as test data showed 95%, 100%, 90%, and 96% in accuracy, precision, recall, and F1 score. Validation of classification performance using abnormal(cardiomegaly) images as test data showed 95%, 92%, 100%, and 96% in accuracy, precision, recall, and F1 score. Our classification results show that the proposed convolutional neural network model shows very good performance in feature extraction and classification of chest X-ray images. The convolutional neural network model proposed in this paper is expected to show useful results for disease classification of chest X-ray images, and further study of CNN models are needed focusing on the features of medical images.
Kim, Gu;Kim, Gyeong-Rip;Lee, Eun-Sook;Cho, Hee-Jung;Sung, Soon-Ki;Moon, Seul-ji-a;Kwak, Jong-Hyeok
The Journal of the Korea Contents Association
/
v.19
no.8
/
pp.284-292
/
2019
To evaluate the usefulness of pediatric chest CT scans by comparing the dose, examination time, and image quality by applying Helical mode, High-pitch mode, and Volume Axial mode to minimize the radiation exposure and obtain high diagnostic value. Revolution (GE Healthcare, Wisconsin USA) was used to divide PBU-70 phantom into Helical mode, High-pitch mode, and Volume Axial mode. After acquiring images, ROI is set for each image, heart, bone, lung, and back-ground air, and the average value is obtained by measuring CT number (HU) and noise (SD). SNR and CNR were measured and compared with DLP values provided directly by the equipment. Determining statistical significance Statistical analysis was performed using ONE-WAY-ANAOVA using SPSS 21.0. In this experiment, it was possible to inspect at a short time without deterioration of image quality with the lowest dose when using volume axial mode. Although the detector coverage of 16 cm is limited to all pediatric chest CT scans, it is recommended to be actively used in pediatric patients, and further study is needed to apply other test sites in volume axial mode.
The purpose of this study was to conduct a task-based field experience program for medical care support departments in hospitals for 1st medical students, and then to analyze the their experiences and its meanings phenomenologically. We selected the following department in hospital; nursing, medical records, pharmacy, diagnosis laboratory, radiology, administration, customer consulting center, organ transplant center, palliative medical ward, and international medical center. The students visited the department and used various methods such as interviewing, observation, and experience to solve the given task. As a result, in the program satisfaction, students rated the highest as having many department in the hospital and understanding their role. The essential structure of the experience of medical care support department in the reflection journal written by the students was the recognition of reality, respect and collaboration, and self-reflection from experience recognition.
Kim, Sung-Hun;Lee, S.H.;Jeon, S.P.;Park, G.U.;Heo, E.S.;Sung, Han-Kyu;Park, J.G.;Nam, Sang-Hee
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2010.06a
/
pp.374-374
/
2010
본 연구는 Roll-to-Roll Sputtering 장비를 사용하여 제작된 Flexible ITO electrode 필름의 방사선 검출기로의 적용가능성을 알아보기 위해 기존의 Glass ITO electrode의 전기적 특성을 비교 평가하였다. 본 연구는 Flexible ITO electrode와 Glass ITO electrode을 하부전극으로 형성하고, 최근에 X-ray 변환체로 활발히 연구되고 있는 Powder 형태의 반도체물질인 HgI2 와 PbI2를 Binder와 일정한 비율로 혼합하여 3-Rolls-Miller를 사용하여 Powder를 일정한 미세크기로 만들고, 대면적 제작이 용이한 Screen-Printing method을 이용하여 시편을 제작하였다. 제작된 필름은 하부전극의 종류에 따른 X-ray 입사 후의 전기적신호의 차이를 측정하고, HgI2와 PbI2 중 Flexible ITO electrode와 더욱 효율적으로 반응하여 기존의 Glass ITO electrode를 대체할 수 있는 전극을 발견하여 진단용 의료영상의 왜곡 현상을 제거할 수 있는 Flexible 방사선 검출기의 제작의 초석을 제공하는 연구를 목적으로 한다. SEM(Scanning Electron Microscope) 통하여 반도체 물질의 결정구조와 크기를 알아보았고, 하부 전극의 종류에 따른 전기적 신호검출을 위해 제작된 필름의 암전류(Dark current) 와 민감도(Sensitivity)를 측정한 후, SNR (Signal -to- Noise)을 계산하여 평가하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.11
/
pp.2077-2082
/
2008
Recent the advanced technologies in medical imaging such as magnetic resonance imaging (MRI) and computed tomography (CT) make doctors improve the diagnostic skill with detailed anatomical information. In general, it is necessary to get a number of MRI images in order to obtain more detail information. However, the performance of MRI machines of privately run hospitals is not good and thus we may obtain only a few of MRI images. If 3D surface reconstruction is accomplished with a few slices, then it generates 3D surface of poor qualify. This paper propose a way to Set a 3D surface of high quality from a few of number of slices. First of all, our algorithm detects the boundary of tissues which we want to reconstruct as a 3D object and find out the set of vortices on the boundary. And then we generate a 3D implicit surface to interpolate the boundary points by using radial basis function. Lastly, we render the 3D implicit surface by using Marching cube algorithms.
When a doctor examines a patient in a hospital, the doctor directly checks the patient's condition and conducts a face-to-face diagnosis through dialogue with the patient. However, it is often difficult for doctors to directly treat patients. Recently, several types of telemedicine systems have been developed. However, the systems have lack of capabilities to observe heart disease, neck condition, skin condition, inside ear condition, etc. To solve this problem, in this paper, an interactive telemedicine robot system with autonomous driving in a room capable of visual examination and auscultation of patients is developed. The developed robot can be controlled remotely through the WebRTC platform to move toward the patient and check a patient's condition under the doctor's observation using the multi-joint robot arm. The video information, audio information, patient's heart sound, and other data obtained remotely from patients can be transmitted to a doctor through the web RTC platform. The developed system can be applied to the various places where doctors are not possible to attend.
A radiographer is a job in charge of diagnostic imaging equipment, and must contribute to the promotion of public health by suggesting an appropriate level of work. To this end, we intend to present an appropriate level of work through evaluation of human harm according to work, statistical evaluation through questionnaires, and domestic and international trends. In the case of human harm evaluation, considering radiation exposure, 42.6%, shield work, 69.7%, and in the case of magnetic resonance imaging, the maximum length of stay in the examination room should be adjusted to 15 minutes and not exceed 30 times. According to the survey statistics, it was confirmed that the physical and mental burden increased due to the high workload and difficulty compared to working hours. Based on domestic and international trends, it is necessary to adjust the examination standards for domestic radiographers to 36.8% to promote national health through qualitative improvement of radiological examinations. something to do.
Hepatocellular carcinoma (HCC) is rather unique. Most of HCC patients have underlying chronic liver diseases with or without cirrhosis and the prognosis of HCC depends on the liver function, as well as the tumor extent. Non-invasive diagnosis of HCC can be made with certain risk factors and specific imaging findings (e.g. hypervascularity). Patients with HCC can receive surgical resection, radiotherapy, and systemic chemotherapy as other solid malignancies. HCC has more treatment options such as liver transplantation, transarterial chemoembolization (TACE) and radiofrequency ablation (RFA). A variety of practice guidelines for HCC has been published by many academic societies. Different healthcare systems and availability of resources also affect the practice guidelines; therefore, practice guidelines have similarities and dissimilarities. Herein, we review the current status of practice guidelines for HCC and future perspectives for the improvement of guidelines are also discussed.
With the development of the 4th industrial, research is being conducted to prevent diseases and reduce damage in various fields of science and technology such as medicine, health, and bio. As a result, artificial intelligence technology has been introduced and researched for image analysis of radiological examinations. In this paper, we will directly apply a deep learning model for classification and detection of pneumonia using chest X-ray images, and evaluate whether the deep learning model of the Inception series is a useful model for detecting pneumonia. As the experimental material, a chest X-ray image data set provided and shared free of charge by Kaggle was used, and out of the total 3,470 chest X-ray image data, it was classified into 1,870 training data sets, 1,100 validation data sets, and 500 test data sets. I did. As a result of the experiment, the result of metric evaluation of the Inception V3 deep learning model was 94.80% for accuracy, 97.24% for precision, 94.00% for recall, and 95.59 for F1 score. In addition, the accuracy of the final epoch for Inception V3 deep learning modeling was 94.91% for learning modeling and 89.68% for verification modeling for pneumonia detection and classification of chest X-ray images. For the evaluation of the loss function value, the learning modeling was 1.127% and the validation modeling was 4.603%. As a result, it was evaluated that the Inception V3 deep learning model is a very excellent deep learning model in extracting and classifying features of chest image data, and its learning state is also very good. As a result of matrix accuracy evaluation for test modeling, the accuracy of 96% for normal chest X-ray image data and 97% for pneumonia chest X-ray image data was proven. The deep learning model of the Inception series is considered to be a useful deep learning model for classification of chest diseases, and it is expected that it can also play an auxiliary role of human resources, so it is considered that it will be a solution to the problem of insufficient medical personnel. In the future, this study is expected to be presented as basic data for similar studies in the case of similar studies on the diagnosis of pneumonia using deep learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.