3GPP WCDMA 시스템은 Rel-99 표준으로부터 시작하여 보완 개선 작업을 거쳐 현재 Rel-6 표준화에 이르렀다. 이와 함께 급변하는 통신시장환경에 적절히 대처하여 향후 제정되는 3GPP 표준 시스템의 경쟁력을 향상시키고 소비자가 요구하는 다양한 서비스를 충족시킬 수 있어야 한다는 사업자들의 의견이 강하게 제기되었다. 이를 만족시킬만한 표준을 얻기 위해 각 사업자 및 제조사 등의 의견을 듣는 자리를 마련하기 위해 2004년 11월 토론토에서 3GPP Future Long-Term Evolution(LTE) Workshop을 개최하였다. 이 워크숍에서 여러 회사들로부터 물리계층에서 서비스 계층까지 다양한 의견이 제안되었으며, 특히 물리계층에서는 OFDM 기반의 기술들이 큰 주목을 받았다. OFDM 기술 자체에 대해서는 3GPP에서 새로운 것은 아니다. 이미 Rel6 표준화 작업과정에 OFDM 의 타당성 조사를 위한 작업(Feasibility Study)을 위해 OFDM Study Item(SI)가 존재하였었다[1]. 하지만 Rel6 시스템에 OFDM을 적용하려는 노력 중에 여러 사정으로 인해 표준화 실질 작업인 Work Item(WI)이 생성되지 못하고 현재 잠정적으로 중단된 상태이다. 본 기고에서는 현재 중단된 OFDM 기술 연구에 대한 과거 진행 내역 및 현재 상황, 또한 향후 RAN LTE 표준화 과정에서 강력한 대안 기술로 지목 받는 이유와 각 회사의 제안 기술들에 대해서 언급하고자 한다. 제1장은 OFDM 기술의 특징과 OFDM Study Item 과정에서 논의된 내용들에 대해서 언급한다. 제2장은 향후 표준화가 진행될 LTE에 서 물리계층 후보 기술로서의 OFDM의 위치에 대해서 논하고자 한다.
인터넷을 통해 정보를 쉽게 공유하게 되면서 소비자는 제품이나 서비스를 이용하기 전 효율적인 의사 결정을 위해 먼저 작성된 다른 사람의 의견을 참고한다. 또한 기업은 이러한 소비자의 의견을 수집하여 제품의 피드백이나 마케팅 등 비즈니스적인 측면으로 활용한다. 수많은 상품평과 후기에서 특정 제품 또는 서비스에 대한 감성을 식별할 수 있다는 점에서, 감성분석은 소비자와 기업 모두에게 주목받고 있는 기술이다. 합리적인 결정을 위해, 소비자는 해당 웹사이트에서 제공하는 데이터를 참고하며, 이 데이터는 웹사이트마다의 기준에 따라 필터링된다. 하지만 제품/서비스에 따라 개인이 중시하는 부분이 다르기 때문에, 실질적으로는 다른 사용자의 의견을 참고하여 합리적인 결정을 내린다. 본 논문은 호텔의 리뷰를 여덟 가지 특성으로 구분하고, 각 특성별로 극성을 분석한다. 또한 사용자가 선호하는 특성에 가중치를 부여하여 순위를 나타내는 시스템을 제안한다. 극성분석 단계에서는 주어진 리뷰를 여덟 가지 특성으로 분류하고, 긍정/부정의 극성으로 분류하는 기계학습 알고리즘을 사용한다. 각각의 특성에 대해 가중치를 적용하여 얻을 수 있는 순서는 기존에 제공되는 순서보다 사용자의 선호도를 정확히 반영한다, 또한 본 논문의 제안을 호텔뿐만 아니라 다양한 제품/서비스에 적용하여 선호도를 반영한 순위 정보를 제공한다면 소비자의 합리적인 의사 결정에 도움을 줄 것이다.
의사 결정을 위한 토론이나 토의의 내용을 객관적 요약하고 분류하는 자동화된 회의록 요약 시스템이 요구되고 있다. 본 논문은 기존에 사용되었던 회의록 요약 시스템을 보완할 수 있도록 word2vec 모델을 이용한 회의록 요약 시스템을 설계하고 구현한다. 제안 시스템은 형태소 분석 과정에서 불용어를 제거하고 문서에서 공통적인 의견을 가진 대표 문장을 추출하기 위해 추가로 word2vec 모델로 학습을 수행한다. 제안 시스템은 회의 과정에서 수집되는 문서를 분석하여 자동으로 분류하고 다양한 의견들 중 안건을 대표하는 대표 문장을 추출한다. 회의 진행자는 제안 시스템을 통해 회의에서 다뤄지는 모든 안건을 보다 빠르게 확인하고 관리할 수 있다. 제안 시스템은 대규모 토론이나 토의의 여러 가지 안건을 분석하여 대표 의견이 될 수 있는 문장을 요약하여 빠른 정확한 의사 결정을 지원한다.
의견이나 이해가 서로 맞지 않는 경우 충돌은 발생한다. 유비쿼터스 컴퓨팅 환경에서 서비스를 수행하는 과정에서 발생하는 충돌의 경우 역시, 그 서비스의 요청 및 수행과정에서 발생하는 의견이해의 차이에서 비롯된다. 서비스의 수행을 결심하기 이전에 그 서비스에 연관된 의견이나 이해관계를 파악하고 그들 사이의 이견을 방지한다면, 서비스 사이에서 발생 가능한 대부분의 충돌을 방지할 수 있다. 본 논문에서는 이를 위해 유비쿼터스 컴퓨팅 환경에서 자동으로 서비스를 제공하는 시스템의 입장에서 각 서비스들이 환경과 그 환경 안의 자원들 사이의 관계에 대한 의미를 정의하고 결정함으로써, 다수의 서비스를 충돌 없이 수행할 수 있는 방법을 제안한다.
오피니언 마이닝은 웹에 있는 문서를 분석하여 작성자의 의견을 요약된 형태로 보여주는 기술이다. 오피니언 마이닝을 이용해 문서 작성자의 주관적 의견을 알 수 있고 이를 통해 작성자의 성향이나 관심사와 같은 정보를 얻을 수 있다. 많은 네티즌들은 소셜 네트워크 서비스를 통해 자신의 의견이 담긴 글을 타인과 공유 하며 네트워크상의 인맥을 넓혀 나간다. 오피니언 마이닝을 통해 개인이 작성한 글들을 분석하여 관심사를 파악하고 비슷한 관심사를 가진 친구를 추천하는 친구 추천 시스템을 제안한다.
대학 수업에서 학생들의 침묵은 학습 분위기에 부정적 영향을 미친다. 본 연구에서는 학생들의 의견 표출과 관련한 동태적 행동 모형을 탐구함으로써 그 해결책에 관한 시사점을 얻고자 한다. 모형에 필요한 기본적인 변수들은 관련 문헌을 통해 추출하고 변수들 간의 동태적인 관련성 및 기타 중요 요소들은 설문조사를 통해 파악하였다. 작성된 모형은 행위자 기반의 컴퓨터 모형으로 구축하여 모의실험을 진행하였다. 실험 결과 개인의 행동은 주변 인원의 반응으로부터 영향을 받으며, 주변에 의견을 표출하는 인원이 많을수록 자신의 의견 표출에 대한 동기로 작용함을 발견하였다. 또한 호의적인 분위기는 비평적인 분위기에 비해 침묵의 비율을 현저히 감소시킬 수 있음을 확인하였고, 비평적인 분위기에서는 침묵의 다수 현상 또한 발생할 수 있음을 발견하였다. 제안된 모형은 의견 표출이나 침묵에 대한 행동 분석이 필요한 다양한 연구 분야에 기초적인 모형으로 제공 될 수 있으리라 기대한다.
온라인 소비자들은 amazon.com과 같은 온라인 상점 플랫폼에 상품 평가(리뷰: review) 글을 남김으로써 대상 상품에 대한 의견을 표현한다. 이러한 상품 리뷰는 다른 소비자들의 구매 결정에도 큰 영향을 끼친다는 관점에서 볼 때, 매우 중요한 정보원이라고 할 수 있다. 사람들이 남긴 의견 정보(opinion)를 자동으로 추출하거나 분석하고자 하는 연구인 감성 분석(sentiment analysis)분야에서 과거에 진행된 대다수의 연구들은 크게는 문서 단위에서 작게는 상품의 요소(aspect) 단위로 사용자들이 남긴 의견이 긍정적 혹은 부정적 감정을 포함하고 있는지 분석하고자 하였다. 이렇게 소비자들이 남긴 의견이 대상 상품 혹은 상품의 요소를 긍정적 혹은 부정적으로 판단했는지 여부를 판단하는 것이 유용한 경우도 있겠으나, 본 연구에서는 소비자들이 '어떤 관점'에서 대상 상품 혹은 상품의 요소를 평가했는지를 자동으로 추출하는 방법에 초점을 두었다. 본 연구에서는 형용사의 대표적인 성질 중 하나가 자신이 수식하는 명사의 속성에 값을 부여하는 것임에 주목하여, 수식된 명사의 속성을 추출하고자 하였고 이를 위해 WordNet을 사용하였다. 제안하는 방법의 효과를 검증하기 위해 3명의 평가자를 활용하여 실험을 하였으며 그 결과는 본 연구 방향이 감성분석에 있어 새로운 가능성을 열기에 충분하다는 것을 보여주었다.
온라인 쇼핑몰에서 상품평은 잠재적인 소비자들의 구매 결정에 영향을 미친다. 사용자는 상품의 특징에 대해 더욱 정확한 정보를 얻기 위해 기구매자들이 작성한 상품평을 참고하고 있으나 그 양이 상당히 많기 때문에 모두 읽는 것은 불가능하다. 본 논문에서는 상품평을 분석하여 상품의 특징과 사용자의 의견을 요약해서 저장하는 상품평 분석 시스템을 제안하였다. 상품평을 분석하는 과정에서 분석에 용이한 그래프 모델을 제안하고, 각각의 상품평을 그래프 단위로 분할하여 분석 및 저장할 수 있도록 시스템을 설계하였다. 분석한 결과를 이용해 상품에 대한 사용자들의 의견을 요약하여 보여주고, 상품평에 대한 순위를 부여하여 사용자가 쉽게 상품평 정보를 얻을 수 있는 시스템을 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.