• Title/Summary/Keyword: 응력의 중첩

Search Result 90, Processing Time 0.156 seconds

Rheological Properties of Cross-Linked Potato Starch (가교화 감자전분의 유변학적 특성)

  • Choi, Moonkyeung;Heo, Hye Mi;Jin, Yong-Ik;Chang, Dong-Chil;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1525-1531
    • /
    • 2016
  • The objective of the present study was to investigate the rheological properties of potato starch cross-linked with different concentrations (0, 0.125, 0.25, and 0.5%, w/v) of cross-linking agents (10 g of adipic acid and 40 g of acetic anhydride). Cross-linked potato starch dispersions showed shear-thinning behaviors (n=0.43~0.63) at $25^{\circ}C$. Apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) significantly increased with an increase in the concentrations of cross-linking agents from 0.125 to 0.5% (w/v). Storage modulus (G') and loss modulus (G'') increased, whereas complex viscosity (${\eta}^*$) was reduced with increasing frequency (${\omega}$) from 0.63 to 62.8 rad/s. Magnitudes of G' and G'' for cross-linked potato starch were significantly increased with an elevation in the concentrations of cross-linking agents. G' values of cross-linked potato starches were significantly higher than G'', indicating that the starches had more elastic properties than viscous properties. Cox-Merz rule was not applicable to potato starch dispersions.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Evolution of Neogene Sedimentary Basins in the Eastern Continental Margin of Korea (한반도 동해 대륙주변부 신제삼기 퇴적분지의 진화)

  • Yoon Suk Hoon;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.15-27
    • /
    • 1993
  • Seismic reflection profiles from the eastern continental margin of Korea delineate three major Neogene sedimentary basins perched on the shelf and slope regions: Pohang-Youngduk, Mukho and Hupo basins. The stratigraphic and structural analyses demonstrate that the formation and filling of these basins were intimately controlled by two phases of regional tectonism: transtensional and subsequent contractional deformations. In the Oligocene to Early Miocene, back-arc opening of the East Sea induced extensional shear deformation with dextral strike-slip movement along right-stepping Hupo and Yangsan faults. During the transtensional deformation, the Pohang-Youngduk Basin was formed by pull-apart opening between two strike-slip faults; in the northern part, block faulting caused to form the Mukho Basin between basement highs. As a result of the back-arc closure, the stress field was inverted into compression at the end of the Middle Miocene. Under the compressive regime, two episodes (Late Miocene and Early Pliocene) of regional deformation led to the destruction and partial uplift of the basin-filling sequences. In particular, during the second episode of compressive deformation, the Hupo fault was reactivated with an oblique-slip sense, which resulted in an opening of the Hupo Basin as a half-graben on the downthrown fault block.

  • PDF

Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm (양자기반 진화알고리즘을 이용한 평면 트러스의 구조최적화)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • With the development of quantum computer, the development of the quantum-inspired search method applying the features of quantum mechanics and its application to engineering problems have emerged as one of the most interesting research topics. This algorithm stores information by using quantum-bit superposed basically by zero and one and approaches optional values through the quantum-gate operation. In this process, it can easily keep the balance between the two features of exploration and exploitation, and continually accumulates evolutionary information. This makes it differentiated from the existing search methods and estimated as a new algorithm as well. Thus, this study is to suggest a new minimum weight design technique by applying quantum-inspired search method into structural optimization of planar truss. In its mathematical model for optimum design, cost function is minimum weight and constraint function consists of the displacement and stress. To trace the accumulative process and gathering process of evolutionary information, the examples of 10-bar planar truss and 17-bar planar truss are chosen as the numerical examples, and their results are analyzed. The result of the structural optimized design in the numerical examples shows it has better result in minimum weight design, compared to those of the other existing search methods. It is also observed that more accurate optional values can be acquired as the result by accumulating evolutionary information. Besides, terminal condition is easily caught by representing Quantum-bit in probability.

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

Geological Structure of the Metamorphic Rocks in the Muju-Seolcheon Area, Korea: Consideration on the Boundary of Ogcheon Belt and Ryeongnam Massif (무주-설천 지역 변성암류의 지질구조: 옥천벨트와 영남육괴의 경계부 고찰)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • The Muju-Seolcheon area, which is known to be located in the boundary of Ogcheon Belt and Ryeongnam Massif (OB-RM), consists of age unknown or Precambrian metamorphic rocks (MRs) [banded biotite gneiss, metasedimentary rocks (black phyllite, mica schist, crystalline limestone, quartzite), granitic gneiss, hornblendite], Mesozoic sedimentary and igneous rocks. In this paper are researched the structural characteristics of each deformation phase from the geometric and kinematic features and the developing sequence of multi-deformed rock structures of the MRs, and is considered the boundary location of OB-RM with the previous geochemical, radiometric, structure geological data. The geological structure of this area is at least formed through four phases (Dn-1, Dn, Dn+1, Dn+2) of deformation. The Dn-1 is the deformation which took place before the formation of Sn regional foliation and formed Sn-1 foliation folded by Fn fold. The Dn is that which formed the Sn regional foliation. The predominant Sn foliation shows a NE direction which matches the zonal distribution of MRs. A-type or sheath folds, in which the Fn fold axis is parallel to the direction of stretching lineation, are often observed in the crystalline limestone. The Dn+1 deformation, which folded the Sn foliation, took place under compression of NNW~NS direction and formed Fn+1 fold of ENE~EW trend. The Sn foliation is mainly rearranged by Fn+1 folding, and the ${\pi}$-axis of Sn foliation, which is dispersed, shows the nearly same direction as the predominant Fn+1 fold axis. The Dn+2 deformation, which folded the Sn and Sn+1 foliations, took place under compression of E-W direction, and formed open folds of N-S trend. And the four phases of deformation are recognized in all domains of the OB-RM, and the structural characteristics and differences to divide these tectonic provinces can not be observed in this area. According to the previous geochemical and radiometric data, the formation or metamorphic ages of the MRs in and around this area were Middle~Late Paleproterozoic. It suggests that the crystalline limestone was at least deposited before Middle Paleproterozoic. This deposition age is different in the geologic age of Ogcheon Supergroup which was recently reported as Neoproterozoic~Late Paleozoic. Therefore, the division of OB-RM tectonic provinces in this area, which regards the metasedimentary rocks containing crystalline limestone as age unknown Ogcheon Group, is in need of reconsideration.

Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, western Korea (당진 지역 제4기 진관단층의 운동 특성과 단층비지의 ESR 연령)

  • Choi, Pom-Yong;Hwang, Jae Ha;Bae, Hankyoung;Lee, Hee-Kwon;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • In order to outline the kinematics and movement history of a new Quaternary fault, Jingwan Fault in Dangjin, West Korea, we analyzed the geometry of the fault zone composed of a few gouge zones, and made ESR dating for fault gouge materials. The $N55^{\circ}E$ striking Jingwan Fault is a normal fault and exhibits a gradual change in dip (gentle in the lower part, steep in the upper part), indicating a listric fault. As for the fault gouge zone, its thickness varies and reaches 2~3 cm in the lower part or between basement rocks, and 20~30 cm in the middle-upper part or between the basement and Quaternary deposit. It is observed in the latter case that more than three gouge zones develop with different colors, and branch out and re-merge, or they are partly superimposed, indicating different movement episodes. The cumulative displacement is estimated to be about 10 m using the geological cross-sections, from which it is inferred that the total length of fault may be about 2.5 km on the basis of the empirical relation between cumulative displacement and fault length. Therefore, a more study would be needed to verify the entire fault length. The results of ESR dating for three gouge samples at different spots along the fault yields ages of $651{\pm}47$, $649{\pm}96$, and $436{\pm}66ka$, indicating at least two movement episodes. Slickenlines observed on the fault planes indicate a pure dip slip (normal faulting), which suggests that the ENE-WSW trending Jingwan Fault was presumably moved under a NNW-SSE extensional environment.

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.