DOI QR코드

DOI QR Code

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests

주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석

  • 김진모 (공주대학교 건설환경공학과, 서울교통공사) ;
  • 김건우 (공주대학교 토목공학과) ;
  • 김시형 (공주대학교 건설환경공학과, 서울교통공사) ;
  • 김도형 (공주대학교 건설환경공학과) ;
  • 김두기 (공주대학교 천안공과대학 스마트인프라공학과)
  • Received : 2023.10.12
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

본 연구는 기존의 재하시험에 의한 계측 결과와 시험 열차 및 상시주행 열차 간의 결과 비교를 통해 주행 열차에 의한 재하시험을 검증하였다. 또한 계측된 자료로부터 정적,·동적 거동 특성을 추출하여 평가를 진행하여 재하시험의 신뢰성 검증을 위해 기존 계측자료와 열차속도, 노선 간 응답 비교, 경향분석, 충격계수 선정 및 고유진동수 분석을 통해 타당성을 입증하였다. 이를 위해 동호철교를 대상지로 적용하였으며 제안 방법의 적용성을 검증하였다. 상시 운행 열차 10대와 시험 열차를 이용하여 교량에 44개의 센서를 부착하고 재하시험 경간에 대한 변형률, 처짐 등을 계측하여 이론치와 비교분석 하였다. 분석 결과 하중의 대칭성 및 중첩성은 양호하며 정적 동적 재하시험 결과에 대한 비교 또한 양호한 것으로 나타났다. 충격계수 분석 결과 최대 실측 충격계수(0.092)가 이론충격계수(0.327)보다 작은 것으로 분석되어, 활하중에 의한 충격 영향은 양호한 것으로 판단된다. 실측 고유진동수는 최저 2.393Hz로 해석 값 2.415Hz와 비교 시 근사하게 평가되었다. 위 결과를 바탕으로 본 논문에서는 내하력 평가 시 열차의 통행 차단이 필요하지 않고, 기존의 처짐 및 응답 계측보다 계측이 용이하도록 트러스 교량구조의 응답 결과를 도출하였다. 주행 열차의 재하시험을 통해 트러스 철도 교량의 변형률 및 처짐을 측정하고 정적, 동적 거동 특성을 파악하여 응력보정을 위한 응답비 및 동적 강성을 평가할 수 있음을 보였다.

Keywords

Acknowledgement

연구수행을 위하여 받은 재정적 지원해주신 공주대학교 「(前) 지진 방재 분야(내진) 전문인력 양상사업(사업단장:김두기 교수님)」에 감사의 뜻을 표합니다.

References

  1. Bae, D. B., Chang, S. P., Lee, S. W., Park, H. G., Gu, B. S., and Lee, K. W. (1994), Behavior Study of a Continuous Three-Span Plate Girder Railway Bridge through Load Testing, Proceedings of the Korean Society of Civil Engineers Conference, The Korean Society of Civil Engineers, 417-420 (in Korean, with English abstract).
  2. Han, M. S., and Shin, S. B.(2021), Feasibility Analysis of the Bridge Analytical Model Calibration with the Response Correction Factor Obtained from the Pseudo-Static Load Test, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 50-59 (in Korean, with English abstract).
  3. Park, Y. J., Choi, E. C., and Park, Y. G. (2020), Response Correction Factor of Load Carrying Capacity on Railway Bridge Using Test/Commercially Operating Train, Journal of The Korean Society For Railway, 23(7), 649-659 (in Korean, with English abstract). https://doi.org/10.7782/JKSR.2020.23.7.649
  4. Hong, S.H., and Roh, H.S. (2018), Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(6), 105-113 (in Korean, with English abstract).
  5. Yoon, S. G., and Shin, S. B. (2019), Evaluation of Bridge Load Carrying Capacity of PSC Girder Bridge using Pseudo-Static Load Test, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 53-60 (in Korean, with English abstract).
  6. Kim, S. W., Cheung, J. H., Kim, S. D., Park, J. B., and Lee, M. J. (2017), Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(3), 60-68 (in Korean, with English abstract).
  7. Kim, S. T., and Huh, Y. (2011), Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(2), 98-106 (in Korean, with English abstract). https://doi.org/10.11112/jksmi.2011.15.2.098
  8. Korea Facilities Safety Corporation, (1999), Report on Precise Safety Diagnosis of Geumgang 1st Bridge on the Gyeongbu Line, 90-121.
  9. Korea Facilities Safety Corporation, (2006), Bridge Load Testing Manual, 3-217.
  10. Seoul Transportation Corporation, (2013), Dongho Railway Bridge Precise Safety Inspection Report (Railway Bridge), 267-327.