• Title/Summary/Keyword: 응결측정시험

Search Result 27, Processing Time 0.019 seconds

Fluidity and Hydration Properties of Cement Paste Added Zinc Fluosilicate(ZnSiF6, aq.) (규불화아연(ZnSiF6, aq)이 첨가된 시멘트의 유동성과 수화특성)

  • Kim, Do-Su;Khil, Bae-Su;Lim, Heon-Seong;Nam, Jae-Hyun;Rho, Jae-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • Zinc fluosilicate ($ZnSiF_6$, 15% aqueous solution) was prepared using zinc oxide (ZnO) and fluosilicic acid ($H_2SiF_6$) by soluiton synthetic method. The fluidity and hydration properties of cement which was added $ZnSiF_6$ (aq.) as an additive for cement were studied. At water to cement ratio (W/C) equals to 0.45, the initial fluidity and slump loss of cement paste which the addition of $ZnSiF_6$ (aq.) was increased from 1.0% to 4.0% based on cement weight were investigated. Initial fluidity of cement paste was measured by mini-slump test and slump loss was examined by measuring the fluidity variation of cement paste with time elapsed from 0 min to 120 min at intervals 30 min. Also, the effect of $ZnSiF_6$ addition on the setting and hydration of cement paste when $ZnSiF_6$ increased in the addition range 1.0% to 3.0% were investigated. The fluidity of cement paste which was added 2.1% $ZnSiF_6$ (aq.) presented the highest value among all addition ranges. The setting time of cement paste was retarded gradually and the heat evolution of hydrated cement was reduced with the increasing of $ZnSiF_6$ addition.

A Study on the Performace Evaluation of Antimicrobial Concrete Using Liquid Reinforcing Antibiotics (액상 수밀성 항균제를 사용한 항균 콘크리트의 성능 평가에 관한 연구)

  • Kim, Gyu-Yong;Kim, Moo-Han;Lee, Eui-Bae;Cho, Bong-Suk;Khil, Bae-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.113-120
    • /
    • 2007
  • In this study, researches for the development of antibiotics and antimicrobial concrete were conducted to reduce biochemical corrosion of sewage concrete. First of all, desired performance, such as watertightness, antibiosis, homogeneity, workability and harmlessness, was proposed and performance of antibiotics and antimicrobial concrete were evaluated by them. As results of this study, dispersibility and antibiosis of liquid antibiotics superior to powdery antibiotics. Antibiosis of antimicrobial concrete was verified, and amount of elution of harmful and effective ingredients was little. In workability, setting time of antimicrobial concrete was delayed. Compressive strength and resistance to carbonation of antimicrobial concrete were more increased than ordinary concrete. Also, as little pore volume and closed structure of antimicrobial concrete were observed, watertightness of it was verified. Finally artificial accelerating test for biochemical corrosion was proposed, and its suitability was experimentally proved.

Controlled Low Strength Material for Emergency Restoration Using Bottom Ash and Gypsum (저회와 석고를 활용한 지반함몰 긴급복구용 고유동성 채움재 연구)

  • Lee, So-Yeon;Yoon, Hwan-Hee;Son, Min;Kong, Jin-Young;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.19-31
    • /
    • 2018
  • Recently the ground subsidence which seriously weakens the safety of cities tends to increase. The purpose of this paper is to develop the materials by using industrial by-products for the application to emergency restoration process in case of ground subsidence. In this paper the laboratory tests including pH test, initial setting test, unconfined compressive strength test, and flow test were performed in order to evaluate the design properties of Controlled Low Strength Material (CLSM). The field test was carried out for evaluating the performance for the early strength of CLSM and the workability for emergency restoration. Test results showed that the strength will be too high to re-excavate the ground when the cement ratio is more than 4%. The optimum mixing ratio appears to be most effective when the mixing ratio of the bottom ash and the gypsum is approximately 50:50 and the cement content is 2%.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.

Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Lee, Jae Nam;Kim, Byoung Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.531-541
    • /
    • 2009
  • The research analyzes and investigates conventional concrete, hydration heat, set, and mechanical properties by making high flowing self-compacting concretes of binary blend and ternary blend as one of evaluations about the properties of the hydration heat of high flowing self-compacting concrete with a strength of 30, 50, and 70 MPa. In addition, it estimates concrete adiabatic temperatures by calculating a thermal property value of powder obtained by measuring a heat evolution amount for powder used in concrete, a thermal property value of concrete obtained by conducting a simple adiabatic temperature test, and a normal thermal property value of material used in concrete, using a simple equation. Moreover, it analyzes and investigates the hydration heat property of high flowing self-compacting concrete and the thermal stress caused by hydration heat by conducting a 3D temperature stress analysis for the hydration heat and the adiabatic temperature obtained by temperature analysis, using MIDAS CIVIL 06 program.

Material Properties of Ultra Rapid Hardening Mortar for Repairing Sewage Treatment Concrete Pipes (콘크리트 하수관거 보수용 초속경 수중불분리 모르타르의 재료적 특성)

  • Lee, Byungjae;Lee, Sunmok;Bang, Jin-wook;Kim, Yun-yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Among the sewage pipes installed in Korea, the length of concrete pipes exceeding 20 years is 66,334 km (42.5%). Deteriorated concrete sewer pipes need to be repaired due to the leakage of internal sewage, which causes problems such as sink holes by expanding the cavity around the pipeline. In this study, we tried to apply anti-washout underwater mortar with ultra rapid hardening cement and segregation reducing agent to sewage pipe repair. As a result of the setting time test, the final set time was delayed by up to 172% by incorporating segregation reducing agent. In the test for measuring the degree of mortar segregation in water, it was measured at pH 12 or less under all mixing conditions. In addition, the suspension amount was measured to be 50 mg / l or less to satisfy the KCI-AD102 standard by incorporating a segregation reducing agent. In terms of the average value of mortar compressive strength, by incorporating segregation reducing agent, the strength of the specimens produced in air was more than 80% of that of the specimens produced in water. Conversely, the bond strengths of the specimens produced in water were measured to be higher than those of the specimens produced in air. Water resistance was evaluated by measuring water absorption and water permeability. Water absorption and water permeability were reduced by 42.6% and 36.6%, respectively, by mixing segregation reducing agent.