• Title/Summary/Keyword: 음향 센서 시스템

Search Result 168, Processing Time 0.024 seconds

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

Analysis of statistical characteristics of bistatic reverberation in the east sea (동해 해역에서 양상태 잔향음 통계적 특징 분석)

  • Yeom, Su-Hyeon;Yoon, Seunghyun;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.435-445
    • /
    • 2022
  • In this study, the reverberation of a bistatic sonar operated in southeastern coast in the East Sea in July 2020 was analyzed. The reverberation sensor data were collected through an LFM sound source towed by a research vessel and a horizontal line array receiver 1 km to 5 km away from it. The reverberation sensor data was analyzed by various methods including geo-plot after signal processing. Through this, it was confirmed that the angle reflected from the sound source through the scatterer to the receiver has a dominant influence on the distribution of the reverberation sound, and the probability distribution characteristics of bistatic sonar reverberation varies for each beam. In addition, parametric factors of K distribution and Rayleigh distribution were estimated from the sample through moment method estimation. Using the Kolmogorov-Smirnov test at the confidence level of 0.05, the distribution probability of the data was analyzed. As a result, it could be observed that the reverberation follows a Rayleigh probability distribution, and it could be estimated that this was the effect of a low reverberation to noise ratio.

Performance Analysis of the Array Shape Estimation Methods Based on the Nearfield Signal Modeling (근거리 신호 모델링을 기반으로 한 어레이 형상 추정 기법들의 성능 분석)

  • Park, Hee-Young;Lee, Chung-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-228
    • /
    • 2008
  • To estimate array shape with reference sources in SONAR systems, nearfield signal modeling is required for the reference sources near a towed array. Array shape estimation method based on the nearfield signal modeling generally exploits the spatial covariance matrix of the received reference sources. Among those method, nearfield eigenvector method uses the eigenvector corresponding to the maximum eigenvalue as a steering vector of the reference source. In this paper, we propose a simplified subspace fitting method based on the nearfield signal modeling with spherical wave modeling. Furthermore, we analyze performance of the array shape estimation methods based on the nearfield signal modeling for various environments. The results of the numerical experiments indicate that the simplified subspace fitting method and the nearfield eigenvector method with single reference source shows almost similar performance. Furthermore, the simplified subspace fitting method with 2 reference sources consistently estimates the shape of the array regardless of the incident angle of the reference sources, whereas the nearfield eigenvector method cannot apply for the case of 2 reference sources.

A Decision-Theoretic Approach to Source Direction Finding Based on the Hopfield Neural Network (Hopfied 신경회로망에 바탕을 둔 음원 방향 탐지의 결정 이론적 접근)

  • Cheung, Wan-Sup;Jho, Moon-Je;Eun, Hui-Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.55-63
    • /
    • 1994
  • A decision-theretic concept is introduced to investigate whether targets of interest in array sensor systems are present at some steering direction or not. The solutions to this problem are described as a set of discrete numbers 0 or 1 corresponding to the direction under consideration. This coded number representation is transplanted in the optimisation technique based on the Hopfield neural network, which may provide an easy understanding of determining the direction of arrival (DOA) of sources. Difficulties encountered in using the conventional state schemes of Hopfield neural network models are addressed and their related issues are raised. To deal with them, an idea that a neuron that decreases more energy difference for its state change of 0 to 1can have higher priority in the order of state transition than others is introduced. This does not only lead to an new state update scheme but also opens a different story in comparison to previous work. To cast the perspectives of the proposed approach and illustrate its effectiveness in source direction finding in array sensor system. simulation results and related discussions are presented in this paper.

  • PDF

The Phase Estimation Algorithm of Arrival Time Difference in MIMO Underwater Sensor Communication (MIMO 수중 통신에서 도착시간 차이에 따른 보상 알고리즘)

  • Baek, Chang-uk;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1531-1538
    • /
    • 2015
  • In this paper, we proposed receiver structure based on an iterative turbo equalization to cope with phase difference between two sensors in MIMO underwater communication channel. In a space-time coded system, it is often assumed that there are no phase errors among the multiple transmitter and receiver chains. In this paper, we have studied the effect of the phase errors between different transmit sensors and different propagation paths in the environment of MIMO underwater communication system, and have shown through BER performance by computer simulations that the bit-error-rate performance can be severely degraded. A decision-directed estimation and compensation algorithm has been proposed to minimize their effects on the system performance. In this paper, we investigate the phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for underwater channel model to minimize their effects.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Crack Source location Technique for nam Concrete Beam using Acoustic Emission (음향방출을 이용한 무근콘크리트 보의 균열 발생원 탐사기법)

  • 한상훈;이웅종;조홍동;김동규
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 2001
  • This study was conducted preliminarily to develop the crack source location technique for plain concrete beam using acoustic emission(AE). Before the main experiment, the test of virtual An source location was achieved in plain concrete block. The sensor layout was mutually compared between triangular layout and rectangular layout. As the results of test, AE source location by triangular layout was evaluated more effective than that by rectangular layout. The specimen to apply he source location technique was man in total nine specimens (each three in 40 %, 50%, 60% of W/C ratio) which the experiment variable was the compressive strength level(W/C ratio). The bending loading method is selected by cyclic loadings to evaluate the degree of concrete damage. It is seen that Kaiser effect and Felicity effect exists through analysis of AE parameters in coming failure experiment. As a result of analyzing the felicity ratio(FR) values, it is shown that this values can be used for evaluating the degree of concerto damage. AE activity is started highly at the 70% of failure load without the compressive strength level. Thus considered by a index in constructing the system of the failure warning at application of the field structure. And the results compared the real cracking location with the source location has perceived by AE monitoring before it is appeared the primary crack by visual observation.