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Abstract

A decision 나ieretic concept is introduced to investigate whether targets of interest in array sensor systems 거re 

present at some steering direction or not. The solutions to this problem are described as a set of discrete numbers (j 

or 1 corresponding to the direction under consideration. This coded number representation is transplanted in the 

optimisation technique based on the Hopfield neural network, which may provide an easy understanding of 

determining the direction of arrival (DOA) of sources. Difficulties encountered m using the conventional st서te 

乂hemes of Hopfi이d neural network models are 겄ddressed and their related issues are raised. To deal with them, an 

idea that a neuron that decreases mort? energy difference for its state change of 0 to 1 can have higher priority in 

the order of state transition than others is introduced. This does not only lead to an new state update scheme but 

also opens a differnet story in comparison to previous work. To cast the perspectives of the proposed approach and 

illustrate its effectiveness in source direction finding in array sensor systems, simulation results and related 

discussions are presented m this paper.

요 약

다종세一서 시스템의 呈체짐, 늑히 임으'!희 방향에 대한 목표불의 유무를 판단하는 눈제에 접云하기 위하여 결정이론을 소개 

한다. 이 무제에 대한 해는 대상 방향에 대한 간단한 수 즉、0 圧는 1호 누성된 中의 집합으星 픔一현되匸" 미맇게 코드로 표현 

된 수는 Hopfield 선경회호-망에 의한 최적화 刃타｝。*一  변환되며, 이머한 변환은 음원의 방향탐지에 대한 이해를 쉽게 한다. 

Hopiiejd 7 경회고망 如길의』존 상내 개 선 방*듬을  사 용-할때 지면하게 되匕 난점든을 수개하며. 只것과 곤!;련된 문제 점들

제 十힌디. 이导 해 •겨하.시 우】하여 새토우 착상. 즉。에서 1으I 상대로 변할 때 본다 큰 에너 시 차이를 보이는 并런이 상태 

개선의 우위를 짇학 -I'- 있나-는 접을 제안한V. 이모」이 "i 号E七 t !-：-： 새，，'，사" 叫 卩 비 나? 以 새皇우 나심윰-

출하게 돈】다•. 工 노운에서는 컴퓨-더 翊으-】 실힘을 통해 세안뇐 방中의 선망파 음워 빙-향 밤지의 효율성을 보인다.

I - Introduction

In the last decade, high resolution array signal 

processing methods have appeared that are com-
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monly biased on the eigenstructure of the corre- 

lariori niatrix. Ttiest? methods I 1-6 j consist of es

timating lhe correi^dion matrix matrix form the 

i'iit?asur<?riients of equpspaccd array sensors and 

decomposing the matrix into the signal subspace 

and the noise subspace. The orthogonality be 

t ween the subspaces is exploited to achieve the 

high resolution spectral distribution over the 

steering Those techniques have provided

fundamentals for approaching acoustic radar or 

sonar systems problems-the early direction findin 

of stationary or moving sources (aircraft or sea 

vessels). They are in general based on linear 

algebrti, i.e. smgukir value decomposition 「기, 

which enables us to estimate the 'best-fitted' 

direction-of arrival of radiating or reflecting sources 

m the least squares sense.

However, we have observed another aspect 

arising from the array sensor system, that is the 

early warning system. It involves a classical problem 

of deciding whether sources are present at the 

steering direction or not (in detalils discussed in 

Chapter 2 of reference [8]). When a source at 

the steering angle is present, the solution corre

sponding to the position is one, and otherwise it 

becomes zero. Obviously, the solutions to the 

problem are the set of simple numbers. Os or Is. 

It is indeed a decision-theoretic problem that 

accompanies a 'nonlinear' mapping of processed 

information about the DOA onto the decision 

space whose state is generally described as a set 

of binary numbers. The above eigenstructure 

methods may provide the basis for obtaining 

related information, but do not lead to any lead to 

any logical approach to the nonlinear decision 

mapping problem. This fact implies the possibility 

of approaching the direction finding problem from 

different viewpoints.

This paper exploits the optimisation technique 

using the Hopfield neural network models [9,10], 

which have proven to be very successful in com

binatorial (NP -completeness) optimisation problems 

:the traveling salesman problem of finding the 

shortest route connecting multiple cities [11」and 

the Hitchcock problem of distributing goods from 

several sources to n니merous locations in such a 

way to miminising the transportation cost [ 12 I. 

One of the important properties of the Hopfield 

model-based optimisation method is the ability to 

simultaneously consider a large number of alte

rnative hypotheses and at remarkable speed 

make adequate decision on them for given data. 

This feature has provided the major motivation 

of investigating the effectiveness of the Hopfielcl 

model-based optimisation in source direction 

finding. In Section II, basic ideas behind the 

Hopfield models are described and linked to the 

above decision problem in the array sensor 

systems. In Section III, we map this decision 

problem onto the Lyapunov candidate function of 

the Hopfield model and make modifications for 

improving the possibility of convergence to the 

better solutions. Simulation results and discussions 

are presented in Section. IV. Finally, concluding 

remarks are summarised in Section V.

II. Fundamentals in Hopfi이d Ne니ml Network 

Models

1. Hopfielcl Mod이s
The Hopfi시d models [9,10] consist of a number 

of mutually interconnected computation units, 

called the neurons, whose states are defined by 

their outputs {vj. Each neuron state can be 

described as a discrete value, i.e. 0 or 1. Fig. 1

Weights: { Wij) Sample Unit Mapping Unit

Fig. 1 Schematic setup of Hopfield neural networks
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shows the schematic setup of H아：)field neural 

network models.

Each neurnn i receiver misltiple inputs, denoted 

by the vector v = m v2,---,vNJ!, projects them 

onto its iiiLeicormection weight vector w, — LWlb 

V12,and then adds 거n extem게ly supplied 

bias input b； to the weighted value. This res너It 

represents the internal potential u. of neuron i

、
w,. • Vj + b, (1)

j = I

where N is the number of neurons. When switches 

sw. in Fig.1 turn on at some discrete time, the sarrpled 

interanl potentials u, are sent to the nonlinear activation 

units to change or leave neuron outputs according to 

a threshold performed by the nonlinear units Nt, that is

vjn) =N(uJn)) =stp(uI(n)) (2)

where n is discrete time index and stp(u) denotes a 

unit step function which is 1 for 니〉。and 0 for u 0. 

Thus neurons take binary values 0 or 1. These binary 

outputs are feed back to the input junction of 

interconnected weights so that neurons gradulally 

evolve to one of stable states in N-dimensional dis

crete space.

Hopfi이d [9,10] showed that if neuron weights wJ; 

are symmetric (w^ =wn) then neurons in the network 

model evolve to one of stable states in such a way of 

minimising a Lyapunov candidate function, called the 

energy function,

E= L wIf - W - v-V b. - y. (3)
Z i 1 j I i = I

In fact, the evolution neurons give m U) is seen to be 

identical to the negative gradient of the energy func

tion (3) with respect to the neuron states {vj. Here, 

one point is clear that only when we define a cost 

function of interest in our problems that is equivalent 

to the energy function (3) we can find their solutions 

by updating the neuron states according to (1) and 

(2), This aspect is well illustrate in previous work 

such as the traveling salesiman problem [11] and 나須 

11 itchcock problem [ 1.21， A major issue in defining 

the energy1 tunct.ion tor directioii finding will \)e 

e>amined in Section HI, and the rest of 나Ss section 

will address the neuron state transition scheme.

2. Asynchronous State Transition Mode
In Fig.l, the transition of neuron states is 

shown to depend on the ways of operating the 

switch/sample unit. As noted by Takeda and 

Goodman [ 12], there are several possible ways of 

doing it. When we turn on all the switches 

synchronously at some discrete time n, we can 

simultanceously update all the neurons. This state 

transition scheme, referred to as the synchronous 

state transition, seems to be a 'normar one. By 

contraries in the stability proof in [9,10], we have 

experienced 'unexpected' res나Its of this scheme, 

i.e. 'oscillatory or wandering' behaviour of the 

neuron states around the minima of the energy 

function, and moreover have failed to implement 

the state transition in a stable manner. A clear 

understanding of the reason for these unfavorits 

still remains as an open question in the neural 

network community. However, it sho나Id be noted 

that the unfavorite features can arise from the 

awys of updating all the neuron states, i.e. the 

ways of operating the switches in Fig.l.

We choose the asynchronous neuron state tran

sition scheme [12] so as to reduce the above 

unfavorite features as much as possible. The 

scheme is as follows : The switches in this asyn

chronous mode are turuned on and off with random 

delay between each switch s나사] that neurons 

t：hange their states

、
u/nH-AtJ = V Wu • V,(n-bAt,)+ b.

and Vj(n 4- At! + £) (uj(n + At j)) (4)

where M is random time delays and e is a small 

positive constant (more details are found in [12]). 
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ciiveri N positive !andoin varial)les, one may decide 

die order of neuron state transition : one neuron with 

srrallei- time d이ay upckites its state earlier and the 

others with larger time delay does latter. This tran

sition scheme means that only one neuron is updated 

al :so me instance anti that it can use information 

al3()ut new states of other neurons that have been 

ah'cadv updated. Takeda and Goodman suggested an 

ascending order, () < Att < At - < - < At\, which 

was very successful in sohang the Hitchcock problem 

L12J. At the beginning of this study, we had examined 

ischeme for state transition and observed that the 

ascending order is not effective in solving the direction 

problem as what will follow. This point has allowed 

us to see an important aspect occuring during nenron 

state transition.

Ijet us consider the specific state transition of a 

neuron from 0 to 1 under condition that the rest of 

neuron states remain zero. The energy of zero-state 

neurons is readily seen to be zero as defined in (3) 

and that of the 'one-state' neuron is also obtained by 

calculating (3). The energy difference level between 

them gives a clue for judging what amount energy 

level is increased or decreased due to the specific 

state transition. By repeating this specific procedure 

for each neuron, we can obtain the energy difference 

levels for all neurons and then sort them m an 

ascending order, i.e. the first for the lowest energy 

level and the last for the highest one. The state tran^ 

sition of a neuron corresponding to the lower energy 

level is obviously seen to minimise more energy. 

Thus, this paper will update each neuron state ac^ 

cording to the ascending order of the energy, differ

ence levels. This scheme at least provides the chance 

of decreasing the energy (3) more ' rapidly and safely, 

by updating the neurons with the lower energy level 

earlier than those of the higher. We will further 

e>amine the effectiveness of this proposed state tran

sition scheme for Hopfield neural network-based 

optimisation in Section IV

III. Hopfi이d Mod이-Based Direction Finding

In the applications of Hopfield neural networks, 

another important question is how to draw logical 

clues from our practical problems and then link 

them to neuron states. First, let us consider K 

equi-spaced array sensors to monitor M plane 

wave sources located at angles {0m : m = 

Using the quadrature demodulation/modulation- 

based preprocessing unit as in Fig.2, monitored 

signals are obtained in an analytic form of 

sampled narrowband signals for n =

y(n) =]y](n), y2(n),...,yK(n)jT = S • c(n) +np(n) (5)

In (5), the matrix S = [sb s2,---,sM] consists of the 

steering vectors sm= [1, e_,Tn\ 項一】也,[卩 

(rm = k ■ d sin(Om) denotes a phase difference, k 

and d are the wave number and the gap between 

eq니「spaced array sensors, respectively), c(n) = 

[cjn), c2(n),---,cM(n)]T is the complex amplitude 

vector of M sources, and np(n) = [npJ(n), np.2(n), 

•-•,nPTK(n)]T denotes the preprocessed complex 

noise vector.

Fgi. 2. Preprocessing Scheme of Quadrature Demodu

lation and Modulation.

cu0 = 27i(f0~AB/2), AB : the bandwid나i of 

lowpass filter, f0 : the considered frequency, j : 

complex bumber, ycos(t) and ysin(t) : the consine 

and sine quadrature components, and the ana

lytic signal y(t) =Los(t) +j ysm(t).

A major problem of interest in this paper is to 

decide whether a source at some direction 0 is 

present or not. To approach this classical dec ion 
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problem, we may choose the range of a limited 

steering angle to some desired resolution. For 

example, given the range between thr starting 

and final dnections (% and f* (仇/'OQ, our interest 

is concerned with N〃 + l directions 丨仏=0 +

:i=0, 1,…,N, with direction resolution △*=  (& 

—^)/N(/(Nf/^the direction index). If a source at 

the direction & present, then the decision result 

may be described as a value of 1 and, if not, it 

may be a value of 0. One bit may be sufficient to 

describe the decision state 겄t direction 아. Thus 

each neuron state v】is related to the decision 

state of direction 优 For N〃 + l directions, (N“+l) 

ne나！■ons participate to solve the direction finding 

problem.

To approach the direction finding problem, we 

should define an adequate cost function th셔□ is of 

the quadratic form similar to (3). As mtroducted 

by Rastogi et al. L13J, the orthogonal projection 

matrix 卩=1、• u^tthe super scrip H denotes the 

Hermitian operator), which is constructed by the 

unit steering vector [1, e e~i?r',---,e ~'IK 气 

/VIT(1 =*-•  d sin(但))of direction Q, can be 

exploited to examine the presence of a source at 

the direction. By projecting time scries y(n) onto 

the orthogonal matrices {Pj, we obtain (N〃 + l) 

direction components

d,(n) = [u1 - u^] • y(n) ^a^n) u, (6)

where ajn) = ( =u】h - y(n)) is the direction cosine 

of y(n) in reference to the projection matrix P,. 

The direction components include 니seful infor

mation to judge the existence of source at direc

tion 仇 so that they may be related to the decision 

result described as the neuron states 丄 It is 

readily seen that if v1 is close to 1 then much 

* weighting' vlaue is assigned to the unit vector U) 

(n) while in case of v, = 0 no significance is given 

to it. Let the projected direction matrix D(n)= 

Ld0(n), d】(n),…,dN“(n)]( = [P。• y(n)), P1 - y(n) 

,• • ■,PN - y(n)]) at time index n and the decision 

state v=「v”，V)......vNJr. Then we can construct 

;i K dimensional signal y、(n);- D(n)■ v and compare 

it to the sampled signal y(n). Mere we can define 

■ he cost function -:)s the mean squared errors be 

tween the sarri[)ied and i uct.ed signals 

Llic N； samples

州 N -1 M n ■- I

=£ L Re Vj

1=() j - (! Nt n - 1

N” ? N,

一切爲 E ha,(n) F-v, (7)

where Re! -! denotes the real part of complex 

number, the symbol*is  the complex conjugate, 

and a scalar value(、» = •乌 is the direction cosine 

between two unit vectors. As explained in [13], 

the cost function is of the quadratic form respect 

to the decision states !v,f and is also similar to 

the Hopfield energy function (3). This implies 

the possibility of solving the direction finding 

problem using the Hopfield neural network-based 

optimisation technique.

To remove the instability arising from the 

non-zerc diagonal terms w(( W 0 of the coefficients 

of V, vt m (7) as noted by Hopfield ]9,10丄 we 

may add to the cost function (7) another cost 

term

，下「切忸(n)回• v,(l—V,) (8)
(I n - 0

whose minimisation constrains the decision results 

v, to lie in 0 or 1. Therefore, it is straightforward 

to obtain the expressions of the interconnection 

weights and the bias terms as in (3) by computing 

the negative gradient of the added cost function 

of (7) and (8) with respect to the decision states

2 D , 1
E al(n)*-aj(n)  -3l)} 
n— 1

for i # j
(9)

and w” = 0,
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l； ' v fl) ： ：. (10)
\' —'

nirerconnection weights »v))<ire shown to be 

cornpul ed from the mean of real parts of inner 

r)roducl of two direction vectors a 1 (n)u)and a.fn) 

ii . and the bias terms to be the mean squared 

vidue direction vectors a,(n)u.. The weights

.■■ifid 나« bu.ts terms m (9) and (10), which appear 

similar to a time averaged version of the corre

sponding terms in L13-15J. are used for the state 

transition scheme (4) in Section II.2.

K. Simulation Results and Discussions

Computer simulations were carried out to examine 

I he decision results by applying the Hopfield 

model-based optimisation technique to the direction 

finding problem m the array sensor system that 

consists of 16 equi-spaced sensors(K = 16). Other 

siin니iation parameters were as follows : the space 

d was chosen to satisfy k -d 兀(K = wave number 

'Znf,.,/c, f(l considered frequency and c wave 

speed), a sampling time AT^ 128/f0(128 words 

per period), and the normalised bandwidth of 

low-pass filter is = (pass-bandwidth x 2-A 

T). We considered four sources (M = 4) located 

at ；6.0： 15.0\ 31.0:;, 44.0°； whose relative amplitudes 

were ! |cs. | ： ；1.0, 0.71, 1.1, 1.0*.  Given 廿蜡 signal-

to-noise ratio (SNR) and the bandwidth ratio of 

the lowpass filter(AB — the pass bandwidth/the 

Nyquist frequency of sampled signals) in the 

q니adrature demodulation/modulation unit, the 

Gaussian random variables with zero mean and 

variance

萨=：寸 Ics,l72-1OSNR/1G； XAB - (11)

i= I

were added to the original source signals and then 

the preprocessing 니nit shown in Fig.2 was employed 

to generate 1 noisy' analytic signals as given in (5). It 

should be noted that SNR in (11) indicates the 

amount of contaminated level within the pass 

5asdwidth of the analytical signals, not in the full 

bandwidth of array sensor outputs. The initial neuron 

potentials , were set to 0.0 and the outputs ! 

were initialised by the small random variables uni

formly distributed in 10~勺 x [(), 1]. The asynchronous 

state transition scheme proposed in Section II.2 were 

used to update the neuron outputs.

In this simulation, the range of direction-of-arrival 

(DOA) from 0.0° to 50.0° degrees was discretised at 

intervals of 0.5° degrees such that a Hopfield net

work model of 101 neurons was considered to exam

ine the decision theoretic problem of source direction 

finding. For 20 [dB] (equivalent H、JR=0

[dBj after quadrature derrixidation/iwdiilation-based 

preprocessing), we first computed the weights and 

bias terms m (9) and (10), evaluated the energy dif

ference levels of 101 neurons by changing each 

neuron state from 0 to 1, and then sorted them in the 

ascending order. Fig.3 shows a typical example for 

the evaluated energy difference levels of 101 neurons.

Fgi. 3. Energy difference level for state trasition of 101 

neurons from 0 to 1.

In this figure, four distinctive energy difference 

levels (marked by T, 'IT, 'III', and 'IV) are shown. 

The state transition of neurons whose difference is 

less than that of level II can minimise the energy (3) 

more than other neurons can do so that they are first 

of all updated. Neurons whose energy difference 

level is between level II and III are next updated. 

According to the ascending order of the difference 

energy levels, the rest of neurons are updated one by 

one

Fgi.4(a) illustrates the decision state (solid line), that 
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is the neuron outputs, after updating 101 neurons. 

Note that the dashed line is the 'normalised1 mean 

value of projected direction vertors :丨 h：!! in 

(10) and the four vertically dashed lines denote the 

position of sources. The final neuron states at the 

directions {6.0°, 15.0°, 31.0", 44.0°； are 아lown to be 

set to 1 and the other states to be 0. These decision 

results indicate some evidence that the decision-the' 

oretic approach addressed in this paper leads to the 

possibility of solving the direction finding problem of 

array sensor systems.

Number of neuron state transitions

Fgi. 4. Decsion result and trend of energy level after 

101 neuron state updates.

Fig. 4(b) shows the trend of the network energy 

defined in (7) during (7) during 101 neuron state 

updates. A series of four staged energy transitions 

are seen to occur, which is well matched with the 

four distinctive energy difference levels shown in Fig.

3. Each 'steep' energy transition is observed only 

when neuron updates are moved from the region of 

one distinctive enerogy difference level to another. 

But, no obvious change of the energy level is seen for 

other neuron state updates. Specifically, after first 47 

neurons has been updated, the energy level is shown 

to remain constant. This means that the decision state 

has been settled down to the final steady solution.

We further e^mined independent samples to see 

their final decision results. Table 1 아lows the final 

results, their mean and variance. Even in case of 20 

IdB] SNR no mistake in deading the directions of 

three sources at U).0\ 31.() \ 44.0」are made. But. for 

the source direction ；15.0 i whose strength is telow .■-> 

:dE〕in comparison to that of others, the decision 

state is shown th be a little biased in TABLE 1.

TABLE 1. Decision results for seven independent 

samples.

Samples Source Locations [deg]: Energy E

! S 的 由 们

#1 1 6.0
「15.5

31.0 : 44.0 -5662.68

#2 ! 6.0
! 15.0

31.0 44.0 -5651.28
—…—— T----- 1 ---- j ------- --------
照 i 6.0 '15.0 ! 31.0 44.0 5665.23

井4 ；6.0 ! 15.5 31.0 I 44.0 -5673.64

*5
i

! 6.0 i 15.5 i 31.0 !
44.0 -5629.15

#6 丨6.0 < 15.5
31.0 1

44.0 -5659.52
........ .......... .... ■ 1----  ■ —... —

#7 i 6.0 ■ 15.0 ； 31.0 i 44.0 5626.94

Mean 6.0 ! 15.3 I 31.0 i 44.0 5652.64

Variance '0.()0 j 0.14 , 0.00 ' 0.00 1962.15

At the beginning of this study, we had chosen the 

state transition scheme suggested in previous work 

[12], referred to as the 1 sequential' state transition 

scheme, which based on the order of time delays as 0 

< At! M At2 < …M AtN. Fig. 5 shows the final deaaon 

state and the trend of the network energy respectively, 

which is the best results among seven independent 

runs. We observed three interesting phenomena from 

the results : the 'decision spitting, the ’biased' decision 

and the 'misjudgement' in decision state. First, two 

paired peaks at 14.5： 9.5°I and {28.5°, 35.5°} are seen 

near the regions of two sources {6.0°, 31.0% (the first 

and third vertically dshed lines). Each decision corre 

sponding ti) both sources is flitted into two components 

located at the left and right hand sides, which 

referred to the decsion splitting. Second, the decision 

results for the source directions of {15.0°, 44.0°} (the 

second and forth vertically dashed lines) are shwon to 

be biased to the directions of {16.0°, 46.5°} respectively. 

Finally, one peak at the direction of {22.01 is seen in 
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卜 i». ( )nc ”)s、닛of 다IE ■unsjudgerncnt' nuy l)e 

ui'Mjrisu.Jod tiom the fact liiat a neuron corrc-s[x)nding 

io :hie niucLi sn^ner energy clifferencc k?vol as shown 

in Fig. 3 can take()门 1 because its decision stale of 0 

or 1 d()os triake little difference in tht energy level.

Number of neuion state transitions

Fgi. 5. Simulation results for the state update scheme 

suggested by Takeda and Goodman L12"!.

To the contrary of 나le previous results shown in 

Fig.4, the trend of the energy lev이 in Fig.5 does not 

provide any clear understanding about the logical 

relationship between the neuron state transition and 

the minimisation of the cost function (5). These 

observations have allowed us to develop the proposed 

update scheme in Section II.2, that is the earlier 

update for the higher significance in the network 

energy (3), and furthermore to achieve the better 

performance of the Hopfield neural network-based 

decision-theoretic approach to the direction finding 

problem.

V. Concluding Remarks

We introduced another aspect for source direction 

finding in array sensor systems and fundamentals 

to approach that problem in a sense of classical 

theory. The mapping of decision states over the 

considered DOA range onto the outputs of the 

discrete Hopfiled neural network are found to 

play a central role m this paper. A new state 

ransitionu scheme according to the ascending order 

of the energy level is proposed. The simulation 

results at least may indicate that the proposed 

scheme is more successful m source direction 

finding than the previous one. Further decision- 

theoretic study on two issues-the closely located 

sources direction finding and the wideband 

sources direction finding problem-is in progress.
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