• Title/Summary/Keyword: 음악 추천 알고리즘

Search Result 21, Processing Time 0.033 seconds

Music Recommendation System Based on User Emotion and Music Mood (사용자 감성과 음원 무드기반 음악 추천 시스템)

  • Choi, Hyun-Suk;Lee, Jong-Hyung;Kim, Min-Uk;Kim, Ji-Na;Cho, Hyun-Tae;Lee, Han-Duck;Yoon, Kyoung-Ro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.142-145
    • /
    • 2010
  • 본 논문에서는 사용자의 12가지 감성 정보와 음악의 8가지 무드 카테고리를 기반으로 음악을 추천해주는 시스템을 구현하였다. 사용자의 감성과 음악의 무드를 기반으로 음악을 검색하기 위해 전공자 집단 5명과 비전공자 집단 13명, 총 18명으로부터 감성 히스토리 정보와 무드 분류 정보를 얻었다. 감성 히스토리 정보는 참여자가 자신의 감성 정보를 지정하고 어떤 음악을 들었는지를 나타내며, 무드 분류 정보는 각 곡이 어떤 무드를 갖는지를 나타낸다. 위에서 얻어진 정보를 바탕으로 사용자의 감성 정보를 기반으로 3가지 각기 다른 추천 알고리즘을 구현했다. 첫 번째 알고리즘은 사용자 감성 정보를 기반으로 얻어진 유사도 곡 리스트 중 1위곡의 무드 정보를 이용하여 음악을 추천한다. 두 번째 알고리즘은 첫 번째 알고리즘에서 1위곡부터 20위곡까지의 무드 정보를 이용하여 음악을 추천한다. 마지막 추천 알고리즘은 사용자 감성 정보를 기반으로 얻어진 유사도 곡 리스트를 등록된 사용자들이 가장 많이 들었던 순서대로 정렬하여 음악을 추천한다.

  • PDF

A Hybrid Music Recommendation System Combining Listening Habits and Tag Information (사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • In this paper, we propose a hybrid music recommendation system combining users' listening habits and tag information in a social music site. Most of commercial music recommendation systems recommend music items based on the number of plays and explicit ratings of a song. However, the approach has some difficulties in recommending new items with only a few ratings or recommending items to new users with little information. To resolve the problem, we use tag information which is generated by collaborative tagging. According to the meaning of tags, a weighted value is assigned as the score of a tag of an music item. By combining the score of tags and the number of plays, user profiles are created and collaborative filtering algorithm is executed. For performance evaluation, precision, recall, and F-measure are calculated using the listening habit-based recommendation, the tag score-based recommendation, and the hybrid recommendation, respectively. Our experiments show that the hybrid recommendation system outperforms the other two approaches.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

Music Recommendation Using Data Mining (데이터 마이닝을 이용한 음악 추천)

  • Lee, Hye-In;Yun, So-Young;Youn, Sung-Dae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.372-375
    • /
    • 2018
  • 본 논문은 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 음악 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.

Music Recommendation Technique Using Metadata (메타데이터를 이용한 음악 추천 기법)

  • Lee, Hye-in;Youn, Sung-dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.75-78
    • /
    • 2018
  • Recently, the amount of music that can be heard is increasing exponentially due to the growth of the digital music market. Because of this, online music service users have had difficulty choosing their favorite music and have wasted a lot of time. In this paper, we propose a recommendation technique to minimize the difficulty of selection and to reduce wasted time. The proposed technique uses an item - based collaborative filtering algorithm that can recommend items without using personal information. For more accurate recommendation, the user's preference is predicted by using the metadata of the music source and the top-N music with high preference is finally recommended. Experimental results show that the proposed method improves the performance of the proposed method better than it does when the metadata is not used.

  • PDF

A Tag-based Music Recommendation Using UniTag Ontology (UniTag 온톨로지를 이용한 태그 기반 음악 추천 기법)

  • Kim, Hyon Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.133-140
    • /
    • 2012
  • In this paper, we propose a music recommendation method considering users' tags by collaborative tagging in a social music site. Since collaborative tagging allows a user to add keywords chosen by himself to web resources, it provides users' preference about the web resources concretely. In particular, emotional tags which represent human's emotion contain users' musical preference more directly than factual tags which represent facts such as musical genre and artists. Therefore, to classify the tags into the emotional tags and the factual tags and to assign weighted values to the emotional tags, a tag ontology called UniTag is developed. After preprocessing the tags, the weighted tags are used to create user profiles, and the music recommendation algorithm is executed based on the profiles. To evaluate the proposed method, a conventional playcount-based recommendation, an unweighted tag-based recommendation, and an weighted tag-based recommendation are executed. Our experimental results show that the weighted tag-based recommendation outperforms other two approaches in terms of precision.

Multiple octave-band based genre classification algorithm for music recommendation (음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1487-1494
    • /
    • 2011
  • In this paper, a novel genre classification algorithm is proposed for music recommendation system. Especially, to improve the classification accuracy, the band-pass filter for octave-based spectral contrast (OSC) feature is designed considering the psycho-acoustic model and actual frequency range of musical instruments. The GTZAN database including 10 genres was used for 10-fold cross validation experiments. The proposed multiple-octave based OSC produces better accuracy by 2.26% compared with the conventional OSC. The combined feature vector based on the proposed OSC and mel-frequency cepstral coefficient (MFCC) gives even better accuracy.

A Study of Music Recommendation System in P2P Network using Collaborative Filtering (P2P 환경에서 협업 필터링을 이용한 음악 추천 시스템에 대한 연구)

  • Won, Hee-Jae;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1338-1346
    • /
    • 2008
  • In this paper, we propose a new P2P-based music recommendation system. In comparison with previous system in client-server environment, the proposed system shows higher quality of music recommendation through real-time sharing of music preference information between peers. A collaborative filtering is implemented as a recommendation algorithm. As a user preference profile, we use the inherit KID music genre index contained in all legitimate music file instead of music feature vectors as in previous research so that the proposed system can mitigate the performance degradation and high computational load caused by feature inaccuracy and feature extraction. The performance of the proposed system is evaluated in various ways with real 16-weeks transaction data provided by Korean music portal, 5 company and it shows comparative quality of recommendation with only small amount of computational load.

  • PDF

Robust Music Categorization Method using Social Tags (소셜 태그를 이용한 강인한 음악 분류 기법)

  • Lee, Jaesung;Kim, Dae-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.181-182
    • /
    • 2015
  • 음악 검색에 있어 소셜 태그 정보는 사용자로 하여금 음악의 내재적 의미를 빠르게 파악할 수 있도록 한다. 음악의 소셜 태그 정보는 음악 추천 시스템을 활용하는 사용자(청취자)에 의해 점진적으로 완성되기 때문에 초기에 완전한 태그 정보를 수집하는 것은 어렵다. 본 논문에서는 음악의 일부 태그가 누락되어 있는 상황에서 음악 정보 검색을 자동으로 수행할 수 있는 클래스 분류 알고리즘을 제안하고자 한다.

  • PDF

Music Therapy Counseling Recommendation Model Based on Collaborative Filtering (협업 필터링 기반의 음악 치료 상담 추천 모델)

  • Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.31-36
    • /
    • 2019
  • Music therapy, a field that convergence music and treatment, which play a fundamental role in personality formation, possesses diverse and complex treatment methods. Music therapists in charge of music therapy may experience the same phenomenon as countertransference in consultation with clients. In addition, experiencing psychological burnout, there are many difficulties in reaching the final goal of music therapy. In this paper, we provide a collaborative filtering-based music therapy consultation data recommendation model for smooth music therapy consultation with clients who visited for music therapy. The proposed model grasps the similarity between the conventional consultation data and the new consultant data through the euclidean distance algorithm. This is to recommend similar consultation materials. Since music therapists can provide optimal consultation materials for consultants who need music therapy, smooth consultation is expected.