• Title/Summary/Keyword: 음악지능

Search Result 122, Processing Time 0.021 seconds

Comparative Analysis of and Future Directions for AI-Based Music Composition Programs (인공지능 기반 작곡 프로그램의 비교분석과 앞으로 나아가야 할 방향에 관하여)

  • Eun Ji Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.309-314
    • /
    • 2023
  • This study examines the development and limitations of current artificial intelligence (AI) music composition programs. AI music composition programs have progressed significantly owing to deep learning technology. However, they possess limitations pertaining to the creative aspects of music. In this study, we collect, compare, and analyze information on existing AI-based music composition programs and explore their technical orientation, musical concept, and drawbacks to delineate future directions for AI music composition programs. Furthermore, this study emphasizes the importance of developing AI music composition programs that create "personalized" music, aligning with the era of personalization. Ultimately, for AI-based composition programs, it is critical to extensively research how music, as an output, can touch the listeners and implement appropriate changes. By doing so, AI-based music composition programs are expected to form a new structure in and advance the music industry.

A Study on the production of Music Content Using Artificial Intelligence Composition Program (인공지능 작곡 프로그램을 활용한 음악 콘텐츠 제작 연구)

  • Park, Dahae
    • Trans-
    • /
    • v.13
    • /
    • pp.35-58
    • /
    • 2022
  • This study predicts the paradigm shift that the development of artificial intelligence technology will bring to the production of music content, and suggests that works created through collaboration between artificial intelligence and humans can have artistic value as finished products. Anyone can easily produce music content using artificial intelligence composition programs, and it has become an opportunity to inspire artists with various attempts and creative ideas. Although artificial intelligence technology provides convenience in human life and benefits a lot in the efficient aspect of work, it is difficult to escape the perception of data-based pattern music in the art field so far. Pattern music with many quantitative elements is not recognized as a complete creation due to the absence of abstract symbolism or meaning pursued by art. However, it predicts that if qualitative elements such as emotions and creativity are given to artificial intelligence music through human collaboration, it can be recognized as a complete work of art. The development of artificial intelligence technology increases access to culture and art from the public, and it can be expected that anyone can enjoy it as well as aesthetic experiences. In addition, various contents can be produced by improving individual digital literacy, and it is an opportunity to share and communicate with others. As such, artificial intelligence technology serves as a medium connecting the public with culture and art, and is narrowing the gap between humans and technology through art activities. Along with this cultural phenomenon, we predict the possibility of research on the production of artificial intelligence music contents with artistic value and the development of various convergence and complex art contents using artificial intelligence technology in the future.

Music Recommendation System Based on User Preference Analysis Using Hidden Markov Model (은닉 마코프 모델을 이용한 사용자 선호도 분석 기반의 음악 추천 시스템)

  • Kim, Geon-Su;Lee, Dong-Hun;Yun, Tae-Bok;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.56-59
    • /
    • 2008
  • 현재의 음악 서비스들의 대부분은 음악을 가수 이름이나 장르와 같은 키워드들로 구분하여 사용자에게 제공한다. 하지만 음악의 장르가 다양해지고, 장르별로 음악의 유형도 다양해짐에 따라 키워드 기반은 음악 제공 방법만으로는 사용자가 원하는 음악을 제공하는데 한계가 있다. 이런 한계점을 극복하기 위하여 음악 자체의 성질을 기반으로 음악을 분석하는 컨텐츠 기반의 음악 분석 방법이 필요하다. 또한 사용자가 원하는 음악을 제공 받을 수 있도록 사용자의 음악 선호도를 분석하여 그에 맞는 음악을 제공하는 방법도 필요하다. 본 논문에서는 음악의 시퀀스 정보와 특징을 추출하여 음악 모델을 구축하고, 이를 사용하여 사용자의 음악 선호도를 분석하는 방법을 제안하고, 사용자의 선호도에 맞는 음악을 제공하기 위하여 선호도 분석 방법을 통해 음악을 추천해주는 시스템을 제안한다.

  • PDF

The Adaptable Music Genre Recommendation System to The Individual Taste (개인 취향에 맞는 음악 장르 추천 시스템)

  • 강성춘;이고은;박정근;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.114-117
    • /
    • 2003
  • 본 논문에서는 사용자가 음악을 직접 선곡하지 않고 락, 트로트, 댄스, 힙합, 발라드 등 5가지의 장르 중 사용자가 선호하는 음악의 장르를 추천하는 시스템을 구현하였다. 실시간으로 연주되는 음악에서 Bass Drum 신호를 추출ㆍ분석하여, 기본적으로 한 마디에 소요되는 시간, 주법, 진폭 등 세가지 파라메터를 이용하여 5가지 장르로 분류하였다 선택 곡 수와 들은 시간으로 퍼지 추론을 통해 각 장르에 대한 사용자 만족도를 평가한다. 평가된 만족도에 의해 사용자가 선호하는 장르의 음악을 제공하는 시스템을 제안한다.

  • PDF

A Music Recommendation System Suitable to the Individual Taste (개인 취향에 맞는 음악 선곡 시스템)

  • 조용성;강은영;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.435-438
    • /
    • 2002
  • 본 논문은 웹 상에서 음악을 듣는 사용자의 음악 취향을 평가 한 후, 취향에 맞는 인터페이스를 추천하는 시스템을 구현하였다. 초기 음악 취향 평가 단계에서는 평가 요소인 장르, 가수, 최신곡에 대한 사용자 데이터와 평가 요소에 대한 실험을 통해 얻은 중요도를 이용하여 퍼지측도.적분을 수행한다. 수행 결과 값이 높은 음악의 평가 요소에 의해 인터페이스를 추천하고, 추천된 인터페이스에 대한 선택 곡 수와 들은 시간으로 퍼지 추론을 통해 인터페이스에 대한 만족도를 평가한다. 평가된 만족도에 의해 중요도를 변경시킴으로써 사용자의 취향에 맞는 인터페이스를 제공하는 시스템 을 제안한다.

The Content-based Genre Classification using Representative Part of Music (음악의 대표구간을 이용한 내용기반 장르 판별에 관한 연구)

  • Lee, Jong-In;Kim, Byeong-Man
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.211-214
    • /
    • 2008
  • 일부 음악 장르분류에 관한 기존 연구에서는 특징 추출을 위한 구간 선택 시 사람이 직접 음악의 주요 구간을 지정하는 방법을 사용하였다. 이러한 방법은 분류 성능이 좋은 반면 수작업으로 인한 부담으로 새롭게 등록되는 음악들에 대해 지속적으로 적용하기가 곤란하다. 이러한 이유로 최근 음악 장르 분류와 관련된 연구에서는 자동으로 추출구간을 선정하는 방법을 사용하고 있는데 이러한 연구의 대부분이 고정된 구간 (예, 30초 이후의 30초 구간)에서 특징을 추출하는 관계로 분류의 정확도가 떨어지는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 음악 전체 구간에 대하여 반복구간을 파악하고, 그 중 음악을 대표할 수 있는 단일 대표구간을 선정한 후, 대표구간으로 부터 특징을 추출하여 장르 분류 시스템에 적용하는 방법을 제안하였다. 실험 결과, 기존 고정구간을 사용한 방법에 비해 괄목할 만한 성능 향상을 얻을 수 있었다.

  • PDF

The Relation between Gender and Multiple Intelligence and Technological Problem Solving Ability of Middle School Students (중학생들의 성별에 따른 다중지능과 기술적 문제해결력과의 관계)

  • An, Gwangsik;Choi, Wonsik
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.64-82
    • /
    • 2006
  • This study investigated what effects multiple intelligence, through which the diverse intelligence abilities of a learner are identified, has on technological problem solving ability according to sex. And it was carried out to present a way to reduce the gap between boys and girls in technological problem solving ability. The subject was 833 middle school students in the third grade (boys: 423, girls: 410) whose schools are located in a megalopolis or more large area. And the instruments developed by Yong-Lyn Moon(2001) and in CRESST(1998) were used. The results of this study are as follows. First, it appeared that there were statistically meaningful differences at six items in multiple intelligence between boys and girls. The six items were bodily-kinesthetic intelligence, logical-mathematical intelligence, naturalistic intelligence, musical intelligence, interpersonal intelligence, and introspective intelligence. Second, in technological problem solving ability, it appeared that boys and girls showed statistically meaningful differences at self-regulation and problem solving strategy. Third, it appeared that logical-mathematical intelligence, linguistic intelligence, introspective intelligence, and natural intelligence had an effect on boys in the way of self-regulation and logic-mathematical intelligence, introspective intelligence, naturalistic intelligence, and linguistic intelligence did on girls. Fourth, it appeared that logical-mathematical intelligence, musical intelligence, and bodily-kinesthetic intelligence had an effect on boys in the way of problem solving ability and linguistic intelligence and musical intelligence had on girls. Fifth, it appeared that logical-mathematical intelligence did an effect on both sexes in drawing up the understanding of contents. On the basis of the results of this study, the area related to multiple intelligence directly or indirectly should be developed in the course of designing the primary and secondary curriculums to reduce the gap between boys and girls in multiple intelligence. With these efforts, the scholastic attainments gap caused by the difference of multiple intelligence will be overcome.

A Playlist Generation System based on Musical Preferences (사용자의 취향을 고려한 음악 재생 목록 생성 시스템)

  • Bang, Sun-Woo;Kim, Tae-Yeon;Jung, Hye-Wuk;Lee, Jee-Hyong;Kim, Yong-Se
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.337-342
    • /
    • 2010
  • The rise of music resources has led to a parallel rise in the need to manage thousands of songs on user devices. So users are tend to build play-list for manage songs. However the manual selection of songs for creating play-list is bothersome task. This paper proposes an auto play-list recommendation system considering user's context of use and preference. This system has two separate systems: mood and emotion classification system and music recommendation system. Users need to choose just one seed song for reflection their context of use and preference. The system recommends songs before the current song ends in order to fill up user play-list. User also can remove unsatisfied songs from recommended song list to adapt user preferences of the system for the next recommendation precess. The generated play-lists show well defined mood and emotion of music and provide songs that user preferences are reflected.

Fast algorithm for user adapted music recommendation system using space partition (공간 분할 기법을 사용한 고속화된 사용자 적응형 음악 추천 시스템)

  • Kim, Dong-Mun;Park, Gyo-Hyeon;Lee, Dong-Hun;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.109-112
    • /
    • 2007
  • 온라인 음악 시장이 점차 커지고 있다. 이에 따라 사용자를 위한 다양한 서비스가 요구되고 있다. 하지만 현재 적용되는 서비스는 통계적인 수치에 기반하는 순위권 나열 혹은 테마나 장르별 음악 소개에 그치고 있다. 따라서 본 논문에서는 사용자의 성향에 가까운 음악을 분석하고 이를 추천하는 방법을 제시한다. 음악 추천 시스템을 위해 우선 사용자의 성향을 분석하기 위하여 사용자가 청취했던 음악의 음파를 분석하여 특성을 추출하여 벡터로 나타낸다. 하지만 추출된 성향과 다른 음악의 성향을 비교해야 하는데 음악의 양이 방대하기 때문에 시간이 오래 걸릴 수 있다. 따라서 이 문제를 해결하기 위해 공간 분할을 통해 검색의 범위를 축소시키고, 음악을 빠르게 추천한다. 실험 결과, 사람의 주관적인 해석이 아닌 음파의 해석을 통해 보다 객관적이고 자동화된 추천 방법을 구현할 수 있었다. 그리고 같은 성질의 음악이 추천되어짐을 확인할 수 있었다.

  • PDF

Artificial Intelligence Applications to Music Composition (인공지능 기반 작곡 프로그램 현황 및 제언)

  • Lee, Sunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This study aimed to provide an overview of artificial intelligence based music composition programs. The artificial intelligence-based composition program has shown remarkable growth as the development of deep neural network theory and the improvement of big data processing technology. Accordingly, artificial intelligence based composition programs for composing classical music and pop music have been proposed variously in academia and industry. But there are several limitations: devaluation in general populations, missing valuable materials, lack of relevant laws, technology-led industries exclusive to the arts, and so on. When effective measures are taken against these limitations, artificial intelligence based technology will play a significant role in fostering national competitiveness.