Music Recommendation System Based on User Preference Analysis Using Hidden Markov Model

은닉 마코프 모델을 이용한 사용자 선호도 분석 기반의 음악 추천 시스템

  • 김건수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이동훈 (성균관대학교 전자전기컴퓨터공학과) ;
  • 윤태복 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이지형 (성균관대학교 전자전기컴퓨터공학과)
  • Published : 2008.04.25

Abstract

현재의 음악 서비스들의 대부분은 음악을 가수 이름이나 장르와 같은 키워드들로 구분하여 사용자에게 제공한다. 하지만 음악의 장르가 다양해지고, 장르별로 음악의 유형도 다양해짐에 따라 키워드 기반은 음악 제공 방법만으로는 사용자가 원하는 음악을 제공하는데 한계가 있다. 이런 한계점을 극복하기 위하여 음악 자체의 성질을 기반으로 음악을 분석하는 컨텐츠 기반의 음악 분석 방법이 필요하다. 또한 사용자가 원하는 음악을 제공 받을 수 있도록 사용자의 음악 선호도를 분석하여 그에 맞는 음악을 제공하는 방법도 필요하다. 본 논문에서는 음악의 시퀀스 정보와 특징을 추출하여 음악 모델을 구축하고, 이를 사용하여 사용자의 음악 선호도를 분석하는 방법을 제안하고, 사용자의 선호도에 맞는 음악을 제공하기 위하여 선호도 분석 방법을 통해 음악을 추천해주는 시스템을 제안한다.

Keywords